人妻暴雨中被强制侵犯在线,亚洲国产欧美日韩精品一区二区三区,四虎影免看黄,国产无人区二卡三卡四卡不见星空

機(jī)械社區(qū)

標(biāo)題: 英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》 [打印本頁]

作者: 陳小黑    時(shí)間: 2015-1-9 22:34
標(biāo)題: 英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 & E0 W# c3 V6 ]; f& U2 b

  t6 L7 M& g% t. H: K (, 下載次數(shù): 6) $ W. D8 X  m" I! _

" G4 J+ d3 d, n* V! d# O- ~ (, 下載次數(shù): 6) 8 K( S) M0 N; o+ V3 v( }$ z. ]; \
: ^' {3 q$ H  C( `$ T/ z0 @
目錄; C/ z, x8 D+ D# q4 ?$ {
% K" I( C/ t0 f4 [( b6 Y
Contents
. O8 u5 b  E/ p5 I$ k+ A& Z% }) S6 P
! a" v. ?* l3 s& s# GPreface page xvii
& Z" U) d7 z5 k  T# x1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ^, Y% ?# d3 l* Y6 ?, s
1.1 Viscoelastic Phenomena 1/ K6 ?3 v2 s( f# F: M$ v* h
1.2 Motivations for Studying Viscoelasticity 3
" o, A) P5 V* t% Q0 n1.3 Transient Properties: Creep and Relaxation 3& X2 g/ \' {, h4 ^$ w
1.3.1 Viscoelastic Functions J (t), E(t) 3
6 |/ }4 u5 I2 o" o! V! J- i1.3.2 Solids and Liquids 7# N" m9 N. A+ u7 x5 h& h; ~7 }1 n
1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8
: E) J, O& T# s6 r! V1.5 Demonstration of Viscoelastic Behavior 10$ w/ K1 I: }& j  z" y, I
1.6 Historical Aspects 10
5 h& O7 [3 M- B' m1.7 Summary 111 r) o5 P' R% e; ?" ]
1.8 Examples 11  y  V8 t8 q/ H- Z' p, f7 d
1.9 Problems 12
" Q6 L& h0 a* K/ v; ]Bibliography 12
/ z9 }8 C; N1 k7 i2 o1 x
- |: x" U4 b- E) k( ^; s$ r' V- j; A" r  Z4 a5 M% C8 n

, D3 X1 i3 D; q4 I5 @4 q7 {" s* O8 K5 `
3 x( m# T' D# k( C# s

# X( W) W" c; s+ T" n2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 f; E. E, b7 o  r* Z5 ]
2.1 Introduction 14
& W/ b: s6 P6 ^8 j5 z2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
( Z$ I; w, L! `1 D9 L0 g2.2.1 Prediction of Recovery from Relaxation E(t) 14
! |0 l% \2 j" J' k7 K: b- {2.2.2 Prediction of Response to Arbitrary Strain History 15
' L3 d' J$ [- K, m2.3 Restrictions on the Viscoelastic Functions 17
6 H0 C* S! G$ A1 F- O9 S2.3.1 Roles of Energy and Passivity 17- J$ C, \' S3 b3 S" ~; [
2.3.2 Fading Memory 188 T  S0 V. J* S
2.4 Relation between Creep and Relaxation 19
" p/ ~  t5 X9 h: Y# ~' z2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19
0 \7 J0 z: V, f. f4 ^2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 206 n' L* w1 M" o
2.5 Stress versus Strain for Constant Strain Rate 20- ?, l! R- |1 V  k4 v
2.6 Particular Creep and Relaxation Functions 21
' g( N% N* H; s" g" J9 J2.6.1 Exponentials and Mechanical Models 21
' N1 _, O  e: A0 m% z: z. S2.6.2 Exponentials and Internal Causal Variables 26
+ T# r( s, S, I( X& ]# w7 l2.6.3 Fractional Derivatives 27, l9 B% \( F4 ~9 x. s
2.6.4 Power-Law Behavior 28
! L$ _* i7 K4 ]* Y" H& w2.6.5 Stretched Exponential 294 V  Y' S. L8 g. Q/ q9 J: O+ L9 M4 |- O! i
2.6.6 Logarithmic Creep; Kuhn Model 29
0 C& O  l' ^$ l. ^2.6.7 Distinguishing among Viscoelastic Functions 30
5 V$ A& [2 w  J3 B, U+ j! ~2.7 Effect of Temperature 30
& L( G% d" |. s) n9 T* X+ [2.8 Three-Dimensional Linear Constitutive Equation 33
, }" ~! ?3 J& e2.9 Aging Materials 35
9 z% _) m% C7 I7 d0 u- P+ m2.10 Dielectric and Other Forms of Relaxation 35
# {) t+ i; n. e2.11 Adaptive and “Smart” Materials 36
+ j; @2 ^  {* v/ k8 d2.12 Effect of Nonlinearity 37- j( `4 d5 s# C' m
2.12.1 Constitutive Equations 37: ]) L2 [- Y! y+ A5 `
2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
- E2 k  |4 S) u2.13 Summary 43
- l# m. W- l" J: [2.14 Examples 43
3 a" V2 H$ L1 @9 R9 h/ @4 M0 G2.15 Problems 51
, T/ r# ?% D- B# s3 Z) wBibliography 52) d" f. b; {; O6 d

+ M0 J" n; p' H- o8 i+ G& h7 O, _/ }* o2 b; P5 G# z

% n' A; d+ U6 B, a! P" R3 m0 T0 B$ D/ F% B! R5 w
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55/ W" k* `: k5 O. W' r9 R
3.1 Introduction and Rationale 55
2 O; K9 ^9 N0 f$ @/ ^) Q3 H5 m3.2 The Linear Dynamic Response Functions E∗, tanδ 56
, l7 _- i$ C3 l% {& T3.2.1 Response to Sinusoidal Input 57+ d9 O* C9 P0 e# i
3.2.2 Dynamic Stress–Strain Relation 59/ Z: l9 d! i$ l# h0 e
3.2.3 Standard Linear Solid 62: H+ s2 t% @+ V  O
3.3 Kramers–Kronig Relations 63
* S) S# w  |0 V& o- E6 \) t$ J0 |3.4 Energy Storage and Dissipation 659 k2 `& c2 x/ u( o' c' d8 [7 Q# G
3.5 Resonance of Structural Members 67
6 Q- K" l, ^! {# \; j3.5.1 Resonance, Lumped System 676 z7 p8 g0 N" Q: o# P! v
3.5.2 Resonance, Distributed System 71) u0 X) R" w" l# k+ r8 Y
3.6 Decay of Resonant Vibration 74
, t, ?7 _7 ?! l- i& a0 O3.7 Wave Propagation and Attenuation 77
/ r5 v  `/ ?( V6 {3.8 Measures of Damping 79
- A  L+ Q# F! k9 [& W* D% N# w8 J3.9 Nonlinear Materials 79
2 K1 G, L" s! ~& C+ l, ^4 i9 I, `3.10 Summary 81
2 A5 G. ?/ A9 x3.11 Examples 81
4 B1 H. \' u7 V2 S; ^, C3.12 Problems 88
! s9 v7 Z8 a3 K5 A5 UBibliography 89
. \# e6 t" U5 o4 Y) q0 j1 A" u6 E4 d. L

& ~2 Q+ \2 Y; x; o$ _
6 B1 p2 Z+ k3 H8 U4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91
6 y% [" n0 @) U. Z" I4.1 Introduction 91
- D( b8 P( ]! W9 C- U4.2 Spectra in Linear Viscoelasticity 925 P5 k+ ~* R; ?' ]
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
/ ^3 e0 s7 ^& L0 }4.2.2 Particular Spectra 93
( m2 ^7 H0 S5 m- \- E$ K. X% y4.3 Approximate Interrelations of Viscoelastic Functions 95
0 p! s  O3 w: F' T4.3.1 Interrelations Involving the Spectra 95
. ], _- \4 T/ ~. k4.3.2 Interrelations Involving Measurable Functions 98! l+ l/ i0 L+ I2 l2 {( f) P6 l
4.3.3 Summary, Approximate Relations 101
' @+ {+ ^% n) @$ [4.4 Conceptual Organization of the Viscoelastic Functions 101
% P$ H' o* u/ ~' H, m4.5 Summary 104
  Y6 A' Z" D& i* ^5 W4 M( e2 n3 p4.6 Examples 104
" d3 ^; `% I/ s4.7 Problems 109$ r% D1 ]% b+ u. Q$ \1 S& Y
Bibliography 109
- J8 E" J7 w) X- S$ h! c; _  _/ H6 m( `

. d8 x4 {% o$ i, E2 d
  e( @* u; k  b# E5 Q2 d. [  d5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111- |" E! @! `0 N" I1 z: x
5.1 Introduction 111
( U" g8 Y: j! W& c# i4 \+ Z5.2 Three-Dimensional Constitutive Equation 111( j3 R" g. Z* ?/ C  g' V1 Y8 X
5.3 Pure Bending by Direct Construction 112
! }% G+ B+ M8 u5.4 Correspondence Principle 114
' z9 E) V# s) P& @# i4 ]5.5 Pure Bending by Correspondence 116
1 ]; }7 O/ V* r8 Q5.6 Correspondence Principle in Three Dimensions 116- {, E% y: l# U% ^9 \
5.6.1 Constitutive Equations 116. M) i' Z' K6 n
5.6.2 Rigid Indenter on a Semi-Infinite Solid 117+ Q& \+ b! Y  l4 ]- k1 w
5.6.3 Viscoelastic Rod Held at Constant Extension 119
/ I5 A& c" f6 m! Q; s% E5.6.4 Stress Concentration 119
$ N/ W/ ^* d6 `2 |5.6.5 Saint Venant’s Principle 1200 K# _2 n6 M! }4 @
5.7 Poisson’s Ratio ν(t) 1211 ^5 ^2 |- r2 U- e2 C6 ~; l
5.7.1 Relaxation in Tension 121
6 X6 k! e4 S* _8 k* C5.7.2 Creep in Tension 123% U% W2 y6 D8 Q
5.8 Dynamic Problems: Effects of Inertia 124; F! h% p. R1 J* f9 l. ~1 L7 V
5.8.1 Longitudinal Vibration and Waves in a Rod 124$ G+ M& j6 k8 h6 e: ~8 E" T; S, A
5.8.2 Torsional Waves and Vibration in a Rod 125
3 }3 S8 ^2 d. S5 [8 R5.8.3 Bending Waves and Vibration 128' Y# u9 q- b7 Z& Z; R& a, S
5.8.4 Waves in Three Dimensions 129
. ~/ i  N% ~  k( I7 T5.9 Noncorrespondence Problems 131
7 T, o7 i9 y. l) m* c. S5.9.1 Solution by Direct Construction: Example 1316 W. j/ n$ N: M9 I# O" ^9 L3 R' [
5.9.2 A Generalized Correspondence Principle 132
2 @' _. o$ w/ E2 B7 v7 T; E3 d5.9.3 Contact Problems 132
; I* K3 t9 M; E6 i" `5.10 Bending in Nonlinear Viscoelasticity 133, ^2 z9 E3 I) q5 y6 y! W
5.11 Summary 134& B1 c/ I2 y3 C
5.12 Examples 134
' z4 E( K+ ^; h& i% P9 V5.13 Problems 142
1 ~* E* l, s# e2 s6 j! x6 }Bibliography 142- J/ n+ a% D) H( g8 V
1 F9 A% J  G' b- m% W
: W) u$ y$ L! Y1 J7 }) f; W& Q' g
; y+ y9 _# K. E& r1 K: w% X
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145+ [' f+ }2 I) A! o1 B7 Y% t
6.1 Introduction and General Requirements 145
. ?# B2 }  t% |& v9 U4 Y6.2 Creep 146
% F; [% k( V* d* g8 I+ D. T6.2.1 Creep: Simple Methods to Obtain J (t) 146
* ~$ e' f2 @, _4 z6.2.2 Effect of Risetime in Transient Tests 1467 U0 ~$ M7 y2 Z9 t
6.2.3 Creep in Anisotropic Media 1486 G; M# v3 u6 e  X' [# l+ B0 Z
6.2.4 Creep in Nonlinear Media 1489 B; y* d% f4 Y- r
6.3 Inference of Moduli 150
: {$ _  M1 O& i8 b: D6.3.1 Use of Analytical Solutions 150' ^7 k' y0 |4 {# V; U8 {
6.3.2 Compression of a Block 1519 R1 E  `; B8 u7 T" W
6.4 Displacement and Strain Measurement 152) W1 b2 e! A6 h! h
6.5 Force Measurement 156
) u) n6 @1 q; `/ r. k+ H6.6 Load Application 157
$ Q( ^% X/ B5 x- P+ L' j" |- y# y$ p9 @6.7 Environmental Control 157- z1 y) o7 V- @2 P! d! v* K0 w
6.8 Subresonant Dynamic Methods 158
2 S, u0 k9 b4 B/ v! p6.8.1 Phase Determination 1583 J% ?% |- ?/ q. I- s' D( M" Q
6.8.2 Nonlinear Materials 160  j' }+ W' @+ |* G$ ^
6.8.3 Rebound Test 1616 L8 S7 \( k4 j' a' \5 U: o- k
6.9 Resonance Methods 161# A& ^* {' D/ Z( z/ A( a- B$ F% w
6.9.1 General Principles 1618 c, P1 \+ J2 v% W  W4 Z
6.9.2 Particular Resonance Methods 163
1 W. Y; D* w- p! V# C$ h% v7 t6.9.3 Methods for Low-Loss or High-Loss Materials 1666 L) d! n9 v7 V3 i1 c
6.9.4 Resonant Ultrasound Spectroscopy 168/ [9 O( H' E' Z7 A' a" a
6.10 Achieving a Wide Range of Time or Frequency 171
3 i* W, w" E: Q- o6.10.1 Rationale 171$ z3 e6 L) v5 ]+ S
6.10.2 Multiple Instruments and Long Creep 172
# K) \6 Q/ a1 P* }" Z6.10.3 Time–Temperature Superposition 172
3 c& H. _& i9 A  ?6.11 Test Instruments for Viscoelasticity 173/ B" u6 ]% d5 }1 W5 u3 M. V
6.11.1 Servohydraulic Test Machines 173
5 o9 M  w3 {# z8 u1 k; x5 a9 i+ p6.11.2A Relaxation Instrument 174
5 }1 P! r, f2 m6.11.3 Driven Torsion Pendulum Devices 174
" g9 G7 w- k" t1 ?& ^2 y$ Y3 i6.11.4 Commercial Viscoelastic Instrumentation 178+ o/ c) E" Y. K9 X  t; Y7 k7 G
6.11.5 Instruments for a Wide Range of Time and Frequency 179
/ G% L- p" k: D/ A2 Y6.11.6 Fluctuation–Dissipation Relation 1827 ~+ M' s( [/ k- R* z$ N1 r
6.11.7 Mapping Properties by Indentation 183
. l) I6 p: v0 g0 ?6.12 Wave Methods 184, ~; g' ~7 Y2 R- P6 L, m# G8 f
6.13 Summary 188; G* ~0 p" ^3 H6 a5 Y: R
6.14 Examples 188
4 q  H7 }: U9 G" m6.15 Problems 200
5 g6 s$ s$ Z4 u, YBibliography 201
! K, e1 K1 o  f0 ~: K+ a, A* r4 z+ R3 g1 f5 e+ e; e
* ?: ^" b: D" U9 h% L( ^7 f) l
+ Q. M* l+ y1 [
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
; k' R: I# d6 ]- X7.1 Introduction 207$ \+ p' L- y' B
7.1.1 Rationale 2070 ?5 ~/ Q2 {. G* A6 A, j
7.1.2 Overview: Some Common Materials 207
: a5 Z' p0 ~/ K  E0 ]9 \7.2 Polymers 208
1 T7 j6 ]% m( H) i0 F6 j7.2.1 Shear and Extension in Amorphous Polymers 208
7 ~- Q$ R  @; X/ m; E( z2 J  a3 D7.2.2 Bulk Relaxation in Amorphous Polymers 212
. p4 P. D/ H. q7 o& E2 r- D$ |9 ^* F7.2.3 Crystalline Polymers 213
# o% x  \6 a5 q$ r0 R7.2.4 Aging and other Relaxations 214
5 O2 [* l. G; b5 o# ~9 }9 ~7.2.5 Piezoelectric Polymers 2144 r) f  {6 A. ^$ g7 \' H
7.2.6 Asphalt 214. ]8 k3 @8 ?( Q/ ?; |2 r8 F: _
7.3 Metals 2156 J" ^/ C$ B4 Q: |. D- b& e
7.3.1 Linear Regime of Metals 215
/ Q. L% U* L8 z, p/ e4 t  D7.3.2 Nonlinear Regime of Metals 217
' K: H# ~3 O2 y; f7.3.3 High-Damping Metals and Alloys 219
, C" P4 Z+ T2 A6 u- f7.3.4 Creep-Resistant Alloys 224& h- l/ p& j# ~: w6 ]
7.3.5 Semiconductors and Amorphous Elements 225$ B! Q4 A# `1 ~5 @( b; f+ o; ^: P
7.3.6 Semiconductors and Acoustic Amplification 226( e7 \+ O! F  a  U
7.3.7 Nanoscale Properties 226
* R% R- `# Q; }* L6 d7.4 Ceramics 227
. U  `. q1 w8 @' B7.4.1 Rocks 227
! ~3 }' A/ u* }; e# e7.4.2 Concrete 2291 s7 @+ g; y* l: O
7.4.3 Inorganic Glassy Materials 231
7 T5 g& a, j+ v" R2 O( I7.4.4 Ice 231# c2 r8 P, z$ _+ @: v9 F( ^
7.4.5 Piezoelectric Ceramics 232  A  O7 v* Q' c' T1 d
7.5 Biological Composite Materials 233
' l! S( Y( D7 _$ x7.5.1 Constitutive Equations 234, e# Q2 r& F) [2 N( a) [
7.5.2 Hard Tissue: Bone 234
. I8 U4 a% H- ]7.5.3 Collagen, Elastin, Proteoglycans 236
% B0 U4 ?. O" ?  }. J9 X5 I7.5.4 Ligament and Tendon 237- }: Q5 V) L+ N/ L+ }5 D2 i
7.5.5 Muscle 240; m5 @$ E+ W# P, G8 _; x
7.5.6 Fat 2435 {. T8 {; F  N6 p
7.5.7 Brain 243/ u0 @: a& u0 h6 l
7.5.8 Vocal Folds 244
6 L$ l& ?7 d5 H6 K* E5 |7.5.9 Cartilage and Joints 244
& ?+ m) Y' o1 h& U7 }7.5.10 Kidney and Liver 246" J, ~/ g& T" O2 S2 Y
7.5.11 Uterus and Cervix 246
2 u, t9 b7 h7 K9 n5 ]( `, k3 Z7.5.12 Arteries 247
  {0 Q/ x! V) [. V! t" J/ Y" v7.5.13 Lung 248- ?8 o2 y& \3 [. \# V' C! d( u6 F+ `
7.5.14 The Ear 248& u' b& Y( ?4 J9 B% u) m
7.5.15 The Eye 249
, n) d, \! r9 `" g. x: Y7 U7.5.16 Tissue Comparison 251; Y# b) Q4 S: ~' m# |
7.5.17 Plant Seeds 252/ W7 Q2 w3 l, o4 ^& f8 X/ ^+ x
7.5.18 Wood 252& Z9 z, P( |4 }+ n2 w
7.5.19 Soft Plant Tissue: Apple, Potato 253; O+ s& b( E) F5 R/ }0 \
7.6 Common Aspects 2531 N/ [; a- T: E9 E% v0 k
7.6.1 Temperature Dependence 253: B" A9 u5 n4 F7 B* _: F( |! M$ {
7.6.2 High-Temperature Background 254
1 {3 }* ]2 M3 L4 X- t7.6.3 Negative Damping and Acoustic Emission 255* E: K" M& v+ a9 {
7.7 Summary 2551 f) @1 o2 x) q, ~4 p
7.8 Examples 2555 b# B- ?1 M$ l8 }' W2 R  `6 e5 K
7.9 Problems 256$ A4 `: R9 O3 m3 E' p8 T
Bibliography 2575 B. K' S6 L) `$ u& G

% Q" c  t) k% ?! S9 R" o7 _! C& _
* Q$ @9 _" C% n! v" ]+ |
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8 M- s! i. s6 f! B' ]5 ?8.1 Introduction 2713 l  w3 @3 R. H1 }6 Y' X
8.1.1 Rationale 271
: f  P. [- b" f5 f/ w8.1.2 Survey of Viscoelastic Mechanisms 271. g" o: h& v% P
8.1.3 Coupled Fields 2734 [1 B# J" Y* `. X5 K* t" K# c
8.2 Thermoelastic Relaxation 274" s2 y( ~- z0 L
8.2.1 Thermoelasticity in One Dimension 274
2 y  r; m, \* Y1 X( x& j7 k. I8.2.2 Thermoelasticity in Three Dimensions 275
. i# v$ I  T. j8.2.3 Thermoelastic Relaxation Kinetics 276
! ]+ i& u+ H  h+ ]& m  ~8.2.4 Heterogeneity and Thermoelastic Damping 278
% y. C$ G  e. h. E  B# r8.2.5 Material Properties and Thermoelastic Damping 280
  c! E$ |4 L8 c" D$ Q8.3 Relaxation by Stress-Induced Fluid Motion 280" ~. z0 d/ W1 u. s9 K3 `' A
8.3.1 Fluid Motion in One Dimension 2806 e' V; d  ?5 k/ k: }) \
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281
& I8 M# U! c/ R8.4 Relaxation by Molecular Rearrangement 286
! k5 v) u$ ^7 M! z5 ^2 u8.4.1 Glassy Region 286
+ B; w3 K3 s) c8.4.2 Transition Region 287/ m: H! N! x: l; L. N3 X
8.4.3 Rubbery Behavior 289: y8 [5 d' n+ j. A
8.4.4 Crystalline Polymers 291
, k: B/ d: A- `8.4.5 Biological Macromolecules 292
' v4 n! ~/ B3 E* G6 l, N. P8.4.6 Polymers and Metals 292
" J) N1 d- L0 E; {, E, u" g8.5 Relaxation by Interface Motion 292: B+ r# Z2 }& l- D, @3 |* T  o  r
8.5.1 Grain Boundary Slip in Metals 292$ [# u, z5 m2 M. D5 q
8.5.2 Interface Motion in Composites 294
% P8 u7 B* h4 h/ z8.5.3 Structural Interface Motion 294
8 `1 g6 [4 l- Z- C% G7 [8 Q) ?, Z0 c1 v8.6 Relaxation Processes in Crystalline Materials 294
5 F, s5 m( z$ T$ J- u1 ^% N! g8.6.1 Snoek Relaxation: Interstitial Atoms 294! M, m. ?. H: E; G6 y
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298/ x. M' ~# Y6 J+ k6 o
8.6.3 Gorsky Relaxation 299# Q; v# ?% y8 P* k+ j# O
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300
6 g: \+ E% e* y; r8.6.5 Bordoni Relaxation: Dislocation Kinks 303) ]+ j' k4 l+ `9 a
8.6.6 Relaxation Due to Phase Transformations 3051 R$ y! m6 j' g- K& `
8.6.7 High-Temperature Background 3146 S$ i/ l2 w& L$ d* @
8.6.8 Nonremovable Relaxations 3158 j) {2 `2 n8 ?# n
8.6.9 Damping Due to Wave Scattering 316
+ g; {- K$ b( I" D$ ~8.7 Magnetic and Piezoelectric Materials 316( W; }& G! ^4 b; j: I( _0 u- T
8.7.1 Relaxation in Magnetic Media 316
1 r4 @  |: ]1 S8.7.2 Relaxation in Piezoelectric Materials 318
; p# J6 E, W% W1 L8.8 Nonexponential Relaxation 322) D9 I2 ^! m7 N2 v" P
8.9 Concepts for Material Design 323
. w) K/ U0 v$ N/ A6 O8.9.1 Multiple Causes: Deformation Mechanism Maps 323. s# l+ [! |6 @5 p
8.9.2 Damping Mechanisms in High-Loss Alloys 3260 q& I$ A3 G' ?& C! K& `# ]
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326# j  @- r4 U7 |: Q; \# B" }" ~4 H
8.10 Relaxation at Very Long Times 327
$ j, k5 }- @7 k1 \  |8.11 Summary 327
3 W, w6 ~, ^- y* n8.12 Examples 328+ N$ v3 c0 f  U7 Y7 I" k* {
8.13 Problems and Questions 332
: n8 {- ^  o. K* t- G/ m3 j8 e( cBibliography 332' V, c* V& S. @  y
8 q+ k3 V! {6 i3 g- W8 r
% O( k0 @% |, m- U, O& I. H2 ]
, }! r$ F% o( Y, e9 n) V' o& \
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
; T0 b9 w3 l( S) h9.1 Introduction 341
4 T: R: e( Z: o7 P  P' [# O9.2 Composite Structures and Properties 341  l4 K) J* m# U
9.2.1 Ideal Structures 341
& V/ E% j7 r; z% T- ~9.2.2 Anisotropy due to Structure 3422 y3 G0 b6 B& V, b4 q, v
9.3 Prediction of Elastic and Viscoelastic Properties 344/ u. g2 U: T5 @& H0 Q9 _
9.3.1 Basic Structures: Correspondence Solutions 344
+ L: F$ o6 h2 F2 ?2 k9.3.2 Voigt Composite 3457 F" [0 w- m& Q! S- q6 m
9.3.3 Reuss Composite 345
. z# `' b; B& k; Z5 T9.3.4 Hashin–Shtrikman Composite 346& y0 ^3 G; R8 y4 J9 s: N) W
9.3.5 Spherical Particulate Inclusions 347
2 H; ?3 @5 X5 n. G: l9.3.6 Fiber Inclusions 349* H" }7 I- i& x
9.3.7 Platelet Inclusions 3493 N8 `' [' H) F. M) k
9.3.8 Stiffness-Loss Maps 350
1 \( H# n1 ~) M1 w: n9.4 Bounds on the Viscoelastic Properties 353) _% M/ p$ x1 m4 j! ]
9.5 Extremal Composites 354
6 J+ V# K$ j( {. @5 q9.6 Biological Composite Materials 356
; s! t3 w4 G$ F& P) v9.7 Poisson’s Ratio of Viscoelastic Composites 357
1 q6 ^- j  V' V* F6 g2 e9.8 Particulate and Fibrous Composite Materials 358
& E' \: p2 k  Q% |9.8.1 Structure 358
. q+ S1 q8 [6 p2 e. a5 {9.8.2 Particulate Polymer Matrix Composites 359
3 x4 J2 _) \1 m4 I8 H1 _9.8.3 Fibrous Polymer Matrix Composites 361
8 u, e/ g1 o# U9.8.4 Metal–Matrix Composites 362
- j! E: M4 C5 K6 F9.9 Cellular Solids 363/ d5 Z& \6 D3 J* n  u1 Z- ~
9.10 Piezoelectric Composites 366
/ a- \9 {& v4 H# P# e; c+ h! u9.11 Dispersion of Waves in Composites 3664 ~6 O- [0 ^7 i2 L) T
9.12 Summary 367
% Z2 B+ r$ F" o6 `1 G. D  t) D9.13 Examples 3678 X, v! D& b2 ^" W
9.14 Problems 370
+ b) D0 b8 p! _. nBibliography 370/ l2 `  S  ]* a( _% i! O

( E! m5 f$ f( ?4 d
$ i- _; n2 p; o$ V
. W; _+ u3 W0 c9 G' q$ w& X10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
# z8 }; N' K% e% f+ p7 m5 Y) x10.1 Introduction 3774 k. x8 {0 o! D
10.2 A Viscoelastic Earplug: Use of Recovery 377
$ ^( c9 q$ B  O2 G% m10.3 Creep and Relaxation of Materials and Structures 378) A1 }9 z3 V. T) o. z
10.3.1 Concrete 378/ B, i) S; F  ]3 Q
10.3.2 Wood 378. t% j0 |, j0 t* p& m) |$ z+ P" o
10.3.3 Power Lines 379- W  Z' r9 I; {" M1 g$ y
10.3.4 Glass Sag: Flowing Window Panes 380
* x7 c, D2 {9 g3 h1 L10.3.5 Indentation: Road Rutting 380- o0 I9 O$ l: C  ?. g
10.3.6 Leather 381
& [' N0 B% n$ [8 J+ C' I10.3.7 Creep-Resistant Alloys and Turbine Blades 381
' i3 b, I! M; u! G& T10.3.8 Loosening of Bolts and Screws 382
0 t, C8 x5 S1 f/ W10.3.9 Computer Disk Drive: Case Study of Relaxation 3842 b: ?/ G8 K) T0 g' z. u) S6 \0 ~
10.3.10 Earth, Rock, and Ice 385) ^" X9 K* |) S% C
10.3.11 Solder 386! M" o% k) c8 r/ ?; Q. D) g5 N
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387; j4 B2 T: }( }5 X
10.3.13Tires: Flat-Spotting and Swelling 3882 V8 T& ?+ Z* l# o* ]3 I
10.3.14Cushionsfor Seats and Wheelchairs 3887 }4 A/ ]9 ?& B& b% s
10.3.15 Artificial Joints 389+ F% H# |: d/ Q! l( f1 w
10.3.16 Dental Fillings 389
8 O" Q' f3 J) [& o: z, Y* q; L10.3.17 Food Products 389
! }# }; S& m' S10.3.18 Seals and Gaskets 390
+ v+ x0 p% O( B! ^6 l( {10.3.19 Relaxationi nM usical Instrument Strings 390, r1 _3 c; s! `; i% r
10.3.20 Winding of Tape 391% L2 g) \! @" S( ^+ ^& B: S1 s6 v
10.4 Creep and Recovery in Human Tissue 391$ O3 P  K5 B$ o. ^0 l* y
10.4.1 Spinal Discs: Height Change 391
( t5 Q. X5 E. ^10.4.2 The Nose 392" ?4 k0 d" i/ J: E4 N
10.4.3 Skin 392
" i; L, }+ o  N- ^3 _9 Y+ p2 }10.4.4 The Head 393" U4 T& q! M, u: q% E
10.5 Creep Damage and Creep Rupture 394
. W4 f1 l) |- V2 Q10.5.1 Vajont Slide 394
0 c0 y6 B9 g: _  R: _( v6 C- {10.5.2 Collapse of a Tunnel Segment 3948 Q0 _9 S  F3 |# S4 S
10.6 Vibration Control and Waves 3942 S) x5 g: o2 y; K  {4 i4 y
10.6.1 Analysis of Vibration Transmission 394
9 V1 _  w0 g5 W, a! W# u10.6.2 Resonant (Tuned) Damping 397/ ~4 i0 V+ M$ H. a  a6 W. b5 y% v
10.6.3 Rotating Equipment Vibration 397
* I/ @4 `" ^% m, i2 N10.6.4 Large Structure Vibration: Bridges and Buildings 3984 k( ~1 X7 H7 y8 {: Y; f
10.6.5 Damping Layers for Plate and Beam Vibration 3996 O; r3 l. a( {2 Q5 K: \
10.6.6 Structural Damping Materials 400
; i' {% b7 n& S6 m0 Y. O" f0 x10.6.7 Piezoelectric Transducers 402
4 e7 q$ b( N( j10.6.8 Aircraft Noise and Vibration 402
( }0 M9 Y; j' F10.6.9 Solid Fuel Rocket Vibration 404# I: G) d) e* r4 A
10.6.10 Sports Equipment Vibration 404( ?7 D+ B( }$ J0 |% j( q5 D
10.6.11 Seat Cushions and Automobiles: Protection of People 404
9 V. q! c+ a5 d5 b- ^10.6.12 Vibrationi n ScientificI nstruments 406# e2 U. `( y8 X5 k  a$ c' `  G
10.6.13 Waves 406% ~+ F+ s7 ^' P# q
10.7 “Smart” Materials and Structures 407" f: k8 W7 W0 H2 ]5 g7 d
10.7.1 “Smart” Materials 407% |7 X; e# T' z5 S7 f
10.7.2 Shape Memory Materials 408
. N2 h7 p  O6 g( |0 d10.7.3 Self-Healing Materials 409
. P/ L$ U( ]! {10.7.4 Piezoelectric Solid Damping 4094 m6 H: M$ S( I' P3 Z
10.7.5 Active Vibration Control: “Smart” Structures 409
$ m% n( P; F( X7 F3 K  N* E1 {10.8 Rolling Friction 409
8 r# c# B+ A2 o) d  [$ g  m10.8.1 Rolling Analysis 410
  _- w) b, K9 m+ h6 b2 s+ L10.8.2 Rolling of Tires 411
; Z; L3 O5 N7 X$ W. [! g- y10.9 Uses of Low-Loss Materials 412' }- k) s8 k7 H9 N* `. [7 L
10.9.1 Timepieces 412, p/ n% N) A) q
10.9.2 Frequency Stabilization and Control 413
  r  ]8 S$ t! Z5 Y. `10.9.3 Gravitational Measurements 413
* o) ]7 u4 \" U; y10.9.4 Nanoscale Resonators 4146 Y5 T( w, x9 Y# }& w' \* W
10.10 Impulses, Rebound, and Impact Absorption 414
& C& }  [( q6 G6 b3 `' O, k0 c- m10.10.1 Rationale 414' b4 w2 r. `: ?/ R
10.10.2 Analysis 415& P3 R' j* V" `0 |
10.10.3 Bumpers and Pads 418( O: U  F& d) @* s
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419
. Q7 V; o3 e5 R& x6 ]10.10.5 Toughness of Materials 419$ q) q4 V5 J& O$ D% `5 A* H: l4 `7 A
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 4207 u7 Y$ G2 A% F0 Z9 Q$ T2 B
10.11Rebound of a Ball 421
5 y) J$ z$ I0 @9 w1 ^& E10.11.1 Analysis 4214 u$ Q  f2 L' Q& D/ K
10.11.2 Applications in Sports 422
: e4 S6 q' k  o0 P0 C2 n9 h- |10.12 Applications of Soft Materials 424
4 i, W6 |' l: c8 Q8 |% P10.12.1 Viscoelastic Gels in Surgery 4244 Z" h9 d/ W. @; o6 R4 V
10.12.2 Hand Strength Exerciser 424
! y" F# q  G( ?* E' W- c& ]! ?10.12.3 Viscoelastic Toys 4244 }9 |( {- T- a2 E& _& \) m, \
10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
1 c: s: V1 @/ H: j, }10.13 Applications Involving Thermoviscoelasticity 425
" Z8 I5 g  J# R' S! I10.14 Satellite Dynamics and Stability 426
& q- W- j% e8 [5 S8 A10.15 Summary 428
! ~$ T+ q0 ]3 m10.16 Examples 429; l* x8 _" U7 Q" H) @) r, o" J1 a
10.17 Problems 431
* @  |: W4 V  \. z1 V3 ^, H! TBibliography 431
# L; d4 A" n% A6 P& r% _0 i& b7 I& e" ~7 \( k
7 d/ ~, S; M( H) K
) P% d/ t$ n) k- ~6 l
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
; S8 M  H5 R% ~A.1 Mathematical Preliminaries 441
8 `5 \; m7 a8 G8 PA.1.1 Introduction 441
3 |" f9 @: K) z' C' aA.1.2 Functionals and Distributions 441
5 B$ A. T# V: M4 QA.1.3 Heaviside Unit Step Function 442
' b7 [3 D$ V& l% ZA.1.4 Dirac Delta 442# F: k8 q3 @2 v  J7 I
A.1.5 Doublet 443& {& c7 {  ~# ]# W5 p
A.1.6 Gamma Function 445) _) x1 P( l. z% Q0 T" D
A.1.7 Liebnitz Rule 4456 U7 @4 o2 B! |) Y
A.2 Transforms 445# J- F$ w! z- W; m3 b% o# b$ R
A.2.1 Laplace Transform 4469 \, a% X1 R# o7 u3 Z5 ~
A.2.2 Fourier Transform 446
' c& }$ K& X( T; Z2 R) vA.2.3 Hartley Transform 447
0 j: H2 w9 Y# \: E& f/ ~A.2.4 Hilbert Transform 447, a$ ~: r  k9 V, i, g" Y
A.3 Laplace Transform Properties 448; J, R0 T1 e0 n; L
A.4 Convolutions 4499 L- Z( L' Q# K9 H, U9 C8 \8 Q1 M% t; Y
A.5 Interrelations in Elasticity Theory 451! A  e# @9 v8 ~! F# Z+ ?8 }
A.6 Other Works on Viscoelasticity 451" s) z$ ~6 t2 K9 N7 U
Bibliography 452- m& a- l+ E6 h9 S+ p, f  O
- u& N5 E5 A- I8 ?5 d6 b  g9 Q: X3 a5 `3 s

( n+ z( u& W; _3 d) \) P* q2 n' uB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
5 K, K8 Q; h2 U4 q, F& ^B.1 Principal Symbols 455: y3 ~1 v% M; L( _; z0 r
Index 457
" Z' s* w. K: l2 r
, `1 G1 t# O; W% {  v5 ^) N- _* {





歡迎光臨 機(jī)械社區(qū) (http://www.xa-space.com/) Powered by Discuz! X3.5