人妻暴雨中被强制侵犯在线,亚洲国产欧美日韩精品一区二区三区,四虎影免看黄,国产无人区二卡三卡四卡不见星空

 找回密碼
 注冊會員

QQ登錄

只需一步,快速開始

搜索

大師級講解:自動控制原理的故事

  [復(fù)制鏈接]
11#
發(fā)表于 2015-10-14 10:41:57 | 只看該作者
看了一遍又看一遍還是不太明白!大概還是學(xué)過的,還是有很多不清楚的!比例、積分控制比較好理解,微分就不太理解了。而且控制論還是要有很多技術(shù)配合的啊!希望以后還能多請教
12#
發(fā)表于 2015-10-14 11:24:03 | 只看該作者
收藏了,謝謝
13#
發(fā)表于 2015-10-14 11:47:58 | 只看該作者
謝謝大師的講解
14#
發(fā)表于 2015-10-14 13:57:02 | 只看該作者
把剩下的兩篇給你們貼出來吧。
" Y1 }' ]) a5 j7 o5 I& N3 s8 g) ?2 g6 q
8 c. \# X- T' Q1 `0 G2 \  f6 [
都看過舞龍吧?一個張牙舞爪的龍頭氣咻咻地追逐著一個大繡球,龍身子扭來扭去,還時不時跳躍那么一兩下。中國春節(jié)沒有舞龍,就和洋人的圣誕節(jié)沒有圣誕老人一樣不可思議。想象一下,如果這是一條眼睛看不見的盲龍,只能通過一個人捏著龍尾巴在后面指揮,然后再通過龍身體里的人一個接一個地傳遞控制指令,最后使龍頭咬住繡球。這顯然是一個動態(tài)系統(tǒng),龍身越長,人越多,動態(tài)響應(yīng)越遲緩。如果只看龍頭的位置,只操控龍尾巴,而忽略龍身子的動態(tài),那就是所謂的輸入-輸出系統(tǒng)。經(jīng)典控制理論就是建立在輸入-輸出系統(tǒng)的基礎(chǔ)上的。對于很多常見的應(yīng)用,這就足夠了。" z" r3 o* e, X/ u8 v2 O" v% t
7 V1 q8 R8 y3 T1 T8 {8 e+ |
. I7 O) D; O" O- c- [( ~, p
. u; @( m7 ?" X5 s9 k$ M% f
但是卡爾曼不滿足于“足夠”。龍頭當(dāng)然要看住,龍尾巴當(dāng)然要捏住,但龍身體為什么就要忽略呢?要是能夠看住龍身體,甚至操縱龍身體,也就是說,不光要控制龍尾巴,控制指令還要直接傳到龍身體里的那些人,那豈不更好?這就是狀態(tài)空間的概念:將一個系統(tǒng)分解為輸入、輸出和狀態(tài)。輸出本身也是一個狀態(tài),或者是狀態(tài)的一個組合。在數(shù)學(xué)上,卡爾曼的狀態(tài)空間方法就是將一個高階微分方程分解成一個聯(lián)立的一階微分方程組,這樣可以使用很多線形代數(shù)的工具,在表述上也比較簡潔、明了。  t  i8 K7 p/ u+ z8 h* N

' i. s3 w6 ^$ v. G7 R6 ?/ p 9 c6 s$ u# l2 \( d
' G( Q8 x' E! x% j4 v: F
卡爾曼是一個數(shù)學(xué)家。數(shù)學(xué)家的想法就是和工程師不一樣。工程師腦子里轉(zhuǎn)的第一個念頭就是“我怎么控制這勞什子?增益多少?控制器結(jié)構(gòu)是什么樣的?”數(shù)學(xué)家想的卻是什么解的存在性、唯一性之類虛頭八腦的東西。不過呢,這么說數(shù)學(xué)家也不公平。好多時候,工程師憑想象和“實干”,辛苦了半天,發(fā)現(xiàn)得出的結(jié)果完全不合情理,這時才想起那些“性”(不要想歪了啊,嘿嘿),原來那些存在性、唯一性什么的還是有用的。
/ |2 G' j* j% n1 V% @/ C5 ~
% L8 c7 T/ w' ?, H0 m " y9 b- L' r% o6 V4 t

6 Z# G' \5 x& b! N) b$ f/ S還是回過來看這條龍?,F(xiàn)在,龍頭、龍尾巴、龍身體都要看,不光要看,還要直接操控龍頭到龍尾的每一個人。但是,這龍不是想看就看得的,不是想舞就舞得的。說到“看”,直接能夠測量/觀測的狀態(tài)在實際上是不多的,所謂看,實際上是估算。要是知道龍身體有多少節(jié)(就是有多少個人在下面撐著啦),龍身體的彈性/韌性有多少,那么捏住龍尾巴抖一抖,再看看龍頭在哪里,是可以估算出龍身體每一節(jié)的位置的,這叫狀態(tài)觀測。那么,要是這龍中間有幾個童子開小差,手不好好拉住,那再捏住龍尾巴亂抖也沒用,這時系統(tǒng)中的部分狀態(tài)就是不可觀測的。如果你一聲令下,部分童子充耳不聞,那這些狀態(tài)就是不可控制的。卡爾曼從數(shù)學(xué)上推導(dǎo)出不可控和不可觀的條件,在根本上解決了什么時候才不是瞎耽誤工夫的問題。這是控制理論的一個重要里程碑。
; H( {7 Q' d; Q8 f  Z( ]/ ?) p' ]3 M. y( X' ]2 U& r" R& p- g
; a; d3 u* {4 C; v; q& M

* n/ [. y4 G4 b3 R$ K( R再來看這條龍。如果要看這條龍整齊不整齊,排成縱列的容易看清楚;如果要清點(diǎn)人數(shù),看每一個人的動作,排成橫列的容易看清楚。但是不管怎么排,這條龍還是這條龍,只是看的角度不同。那時候中國人的春節(jié)舞龍還沒有在美國的中國城里鬧騰起來,不知道卡爾曼有沒有看到過舞龍,反正他把數(shù)學(xué)上的線性變換和線性空間的理論搬到控制里面,從此,搞控制的人有了工具,一個系統(tǒng)橫著看不順眼的話,可以豎著看,興趣來了,還可以斜著看、倒著看、擰著看,因為不管怎么看,系統(tǒng)的本質(zhì)是一樣的。但是不同的角度有不同的用處,有的角度設(shè)計控制器容易一點(diǎn),有的角度分析系統(tǒng)的穩(wěn)定性容易一點(diǎn),諸如此類,在控制理論里就叫這個那個“標(biāo)準(zhǔn)型”。這是控制理論的又一個里程碑。  I9 Q) Y4 {7 \8 R) N' V

. r; P$ j5 Y4 B! `( k) Y
* r+ k9 D7 q7 G* {; Y
9 l) h) \! L% D8 J觀測狀態(tài)的目的最終還是控制。只用輸出的反饋叫輸出反饋,經(jīng)典控制理論里的反饋都可以歸到輸出反饋里,但是用狀態(tài)進(jìn)行反饋的就叫狀態(tài)反饋了。輸出反饋對常見系統(tǒng)已經(jīng)很有效了,但狀態(tài)反饋要猛得多。你想象,一個系統(tǒng)的所有狀態(tài)都被牢牢地瞄住,所有狀態(tài)都乖乖地聽從調(diào)遣,那是何等的威風(fēng)?臺商大奶們的最高境界呀。+ ]/ }5 `" R9 i; p$ T

& B0 T2 B, L) l/ j, G! `
2 k9 H0 J, n: f1 g. ]( E' i
' p+ _" t2 t# W+ D/ \* L  M盡管學(xué)控制的人都要學(xué)現(xiàn)代控制理論,但大多數(shù)人記得卡爾曼還是因為那個卡爾曼濾波器(KalmanFilter)。說它是濾波器,其實是一個狀態(tài)觀測器(stateobserver),用來從輸入和輸出“重構(gòu)”系統(tǒng)的狀態(tài)。這重構(gòu)聽著玄妙,其實不復(fù)雜。不是有系統(tǒng)的數(shù)學(xué)模型嗎?只要模型精確,給它和真實系統(tǒng)一樣的輸入,它不就乖乖地把系統(tǒng)狀態(tài)給計算出來了嗎?且慢:微分方程的解不光由微分方程本身決定,還有一個初始條件,要是初始條件不對,微分方程的解的形式是正確的,但是數(shù)值永遠(yuǎn)差一拍。卡爾曼在系統(tǒng)模型的微分方程后再加了一個尾巴,把實際系統(tǒng)輸出和模型計算的理論輸出相比較,再乘上一個比例因子,形成一個實際上的狀態(tài)反饋,把狀態(tài)重構(gòu)的偏差漸進(jìn)地消除,解決了初始條件和其他的系統(tǒng)誤差問題。卡爾曼濾波器最精妙之處,在于卡爾曼推導(dǎo)出一個系統(tǒng)的方法,可以考慮進(jìn)測量噪聲和系統(tǒng)本身的隨機(jī)噪聲,根據(jù)信噪比來決定上述比例因子的大小。這個構(gòu)型其實不是卡爾曼的獨(dú)創(chuàng),隆伯格(Luenburg)也得出了類似的結(jié)構(gòu),但是從系統(tǒng)穩(wěn)定性角度出發(fā),來決定比例因子。同樣的結(jié)構(gòu)大量用于各種“預(yù)測-校正”模型結(jié)構(gòu),在工業(yè)上也得到很多應(yīng)用,比如聚合反應(yīng)器的分子重量分布可以用反應(yīng)器的溫度、進(jìn)料配比、催化劑等來間接計算,但不夠精確,也無法把林林總總的無法測量的干擾因素統(tǒng)統(tǒng)包括進(jìn)數(shù)學(xué)模型里,這時用實驗室測定的真實值來定期校正,就可以結(jié)合數(shù)學(xué)模型及時地特點(diǎn)和實驗室結(jié)果精確的特點(diǎn),滿足實時控制的要求,這或許可以算靜態(tài)的卡爾曼濾波器吧??柭鼮V波器最早的應(yīng)用還是在雷達(dá)上。所謂邊掃描邊跟蹤,就是用卡爾曼濾波器估計敵機(jī)的位置,再由雷達(dá)的間隙掃描結(jié)果來實際校正。實際應(yīng)用中還有一個典型的問題:有時候,對同一個變量可以有好幾個測量值可用,比如有的比較直接但不精確,有的是間接的估算,有很大的滯后但精確度高,這時可以用卡爾曼濾波器把不同來源的數(shù)據(jù)按不同的信噪比加權(quán)“整合”起來,也算是民用版的“傳感器融合”(sensorfusion)吧。5 S$ ~" M# l; {& h
, I+ U3 _- M+ `- q3 E1 Z. l

  ]5 w( P; [; H; s* ]  F6 W- r( K$ p" k8 h9 e$ P6 U
除了卡爾曼濾波器外,卡爾曼的理論在實際中用得不多,但是卡爾曼的理論在理論上建立了一個出色的框架,對理解和研究控制問題有極大的作用。
" j% q) o! w9 b: l5 a) v' n7 v7 E: G
# m$ R) |9 ~; _# U

- o5 Z; g) @& q% W  e  Z順便說一句,卡爾曼的理論基本局限于線形系統(tǒng),也就是說,十塊大洋買一袋米,二十塊大洋就買兩袋米,都是成比例的。實際系統(tǒng)中有很多非線性的,兩千塊大洋還能買兩百袋米,但兩千萬大洋就要看米倉有沒有貨了,不是錢越多,買的米越多,有一個“飽和”的問題。另一方面,要是米倉有足夠的貨,兩千萬大洋的集團(tuán)購買力強(qiáng),或許就可以買三百萬袋米了。這些只是非線性的簡單例子。所有偏離線性問題的都是非線性,所以非線性的問題研究起來要復(fù)雜得多。實際系統(tǒng)還有其他特性,有的是所謂時變系統(tǒng),像宇宙火箭,其質(zhì)量隨時間和燃料的消耗而變,系統(tǒng)特性當(dāng)然也就變了。很多問題都是多變量的,像汽車轉(zhuǎn)彎,不光方向盤是一個輸入,油門和剎車也是輸入變量。狀態(tài)空間的理論在數(shù)學(xué)表述上為線性、非線性、單變量、多變量、時變、時不變系統(tǒng)提供了一個統(tǒng)一的框架,這是卡爾曼最大的貢獻(xiàn)。" d0 }' y$ H  Q+ W' |) N& T: D

% y% ~* u" U' i% T$ B 8 q: O; j, t7 a% F; N( Q* N/ g
# k. t4 \+ E1 b9 h" o  o
最優(yōu)控制
: g# T  z% R+ t" U
" N# C+ K0 Y8 W0 Q; J8 S  X
$ K0 b. L6 b, V; p+ E
) t# e& {8 Y# Y7 _0 b前面說到,搞控制有三撥人:電工出身的,化工出身的,和應(yīng)用數(shù)學(xué)出身的。在卡爾曼之前,電工出身的占主導(dǎo)地位,數(shù)學(xué)家們好在象牙塔里打轉(zhuǎn)轉(zhuǎn),化工出身則還對控制理論懵里懵懂,還在“實干”呢。卡爾曼之后,一大批數(shù)學(xué)出身的人,利用對數(shù)學(xué)工具的熟悉,轉(zhuǎn)攻控制理論。一時間,控制理論的數(shù)學(xué)化似乎成了“天下大勢,順我者昌,逆我者亡”了。在狀態(tài)空間的框架下,多變量沒有太多的問題好研究,于是最優(yōu)化成為控制理論的新時尚。
0 T% ^  ^1 z5 c3 s, c8 z% O# a1 h+ p

; f- l# {* x( F- X: S! R% M5 e" z( N+ |5 Y7 k! r
對于一根給定的曲線,求一階導(dǎo)數(shù)為零的點(diǎn),就是這個曲線的極點(diǎn);在對這一極點(diǎn)求二階導(dǎo)數(shù),大于零就是最小點(diǎn),小于零就是最大點(diǎn)。這是牛頓老爺子就整明白的東東,現(xiàn)在高中或大一人人都學(xué)過的東西。但是動態(tài)系統(tǒng)是一個微分方程,對微分方程求一階導(dǎo)數(shù)為零,就導(dǎo)致變分法和所謂歐拉方程。但這個東西用起來不方便。實際的最優(yōu)控制不大直接使用變分。
4 I+ @0 |9 e2 s
, K: _9 @8 @( _
/ C1 ?( D8 p; ~; y4 U$ h6 _* b
/ k- S3 |3 K$ a( {' _俄羅斯是一個奇怪的地方。老毛子們要么蔫蔫的,要么瘋狂的。俄羅斯的悲劇電影看得你也郁悶得想去自殺。但是老毛子要是搭錯筋整出一個喜劇呢?那你要么跟著瘋狂,要么被逼瘋狂。就是這么一個地方,除了無數(shù)托爾斯泰、柴可夫斯基、普希金、屠格涅夫等文藝巨璧外,俄羅斯也盛產(chǎn)數(shù)學(xué)家,其中兩個是龐特里亞京和學(xué)控制的人老惦記著的李亞普諾夫。* {9 w" k) Q+ t2 O) w/ [/ C( j
6 ^; F& `9 E8 T# J, g& ^
2 b# e4 [! \( `) M
9 z* ]) |) H0 R4 d3 \  F
龐特里亞京的極大值原理聽起來嚇人,其實說白了很簡單??匆娔巧絾??山頂就是最高點(diǎn)(切,這還用說?);看見那山坡嗎?要是在山腰劃一道線,從山下往上爬,盡管山坡還在繼續(xù)往上延伸,但是到線為止,不得逾越,那山腰上那道三八線就是最高點(diǎn)(切,這還用說?)。這就是龐特里亞京的極大值原理。當(dāng)然啦,龐特里亞京是用精巧、深奧的數(shù)學(xué)語言表述的,要不然他在數(shù)學(xué)界里也別混了。不過呢,意思就是這么一個意思。
$ V3 \6 i/ ^; u, D$ G, m; e5 H4 g& g1 D5 N5 u

) S3 [! d% [0 Q( [1 e2 x" Q0 j
( ?$ g  }# ~, b9 V4 h; b9 ~) ]龐特里亞京極大值原理的一個典型應(yīng)用就是所謂最速控制問題,或者叫時間最優(yōu)控制(timeoptimalcontrol)問題,簡單地說,就是給定最大馬力和最大剎車功率,問題是怎么開汽車能夠最快地從A點(diǎn)開到B點(diǎn)(什么轉(zhuǎn)彎、上下坡、紅綠燈,這種瑣碎的事情也要拿來煩人?一點(diǎn)品味都沒有!)。你可以用優(yōu)美但繁瑣的數(shù)學(xué)求證,或者用膝蓋想想:最快的方法,就是一上來就加足馬力,全速前進(jìn);然后在不到終點(diǎn)的某一地點(diǎn),全力剎車,使慢下來的汽車在到達(dá)終點(diǎn)時正好停下來。這是最快的方法,不可能比這更快了。稍微發(fā)揮一點(diǎn)想象力,可以想象“梆”的一下,控制量的油門板一腳到底,再是“梆”的一下,剎車板一腳到底,控制任務(wù)就完成了。所以最速控制也叫“梆-梆”控制(bangbangcontrol)。
3 ?; U! ]2 h& w  @+ m! B7 A, y) ], `$ S0 T, \; y

! H, I; m- |0 U5 l) ^
/ E0 H" }8 e5 Z4 t) ]4 o最速控制在理論上是一個很有趣的問題,解法也是簡潔、優(yōu)美,但在實際中直接使用的例子實在是鳳毛麟角,一般都是開始時用“梆-梆”,或者勻速上升到最大控制,以緩和控制的沖擊力;到終點(diǎn)附近時,改用PID作閉環(huán)微調(diào),以克服“梆-梆”對系統(tǒng)模型誤差十分敏感的缺點(diǎn)。電梯控制就是這樣一個例子。從一樓到四樓,電動機(jī)很快勻速上升到最高轉(zhuǎn)速,一過三樓,電動機(jī)就下降到較低的轉(zhuǎn)速,然后根據(jù)電梯實際位置和樓面之差,有控制地減速,直至停下來。要是控制參數(shù)調(diào)得好的話,一下子就穩(wěn)穩(wěn)當(dāng)當(dāng)?shù)赝O聛?;要是調(diào)的不夠好,會在停下來之前上下晃蕩幾下。
* {8 ^) Q' e% Z2 H- v3 O6 d9 Z) ]4 b
4 F. F2 H$ [- t; v/ W" ?  A9 _$ w

$ i9 W# U, I* M& y1 ~0 R; Q2 U$ G& u2 f2 a
最速控制問題是較早的最優(yōu)控制問題,它提供了一個很有趣的思路,但這顆樹上開花結(jié)果不多。相比之下,最優(yōu)控制的另外一支枝繁葉茂,有生氣得多了。這一支就是線型二次型最優(yōu)控制(linearquadraticcontrol)。數(shù)學(xué)是有趣的,但數(shù)學(xué)也是盲目的。在數(shù)學(xué)上,最優(yōu)化問題就是一個在曲面上尋找凸點(diǎn)的問題,只要你能把一個物理問題表述成一個曲面,數(shù)學(xué)是不理會姓無姓資的。既然如此,控制偏差的平方在時間上的累積就是很自然的選擇,二次型就是平方在線性代數(shù)里的說法。線型系統(tǒng)的偏差平方有很好的性質(zhì),這山峰是一個饅頭山,沒有懸崖峭壁,沒有溝坎,容易爬;一山只有一峰,不用擔(dān)心找錯地方。不過這山峰不能只包含控制偏差,還要包含控制量,原因有三個:
& t7 ~8 _6 g# K- @7 P4 Y- g' m/ G
* T# R3 R5 d2 G9 X& ]6 \+ ^
: d4 z: ~' ~: l% A. T
1、如果不包括控制量,那最優(yōu)控制的解是沒有意義的,因為無窮大的控制量可以使累計平方偏差為最小,但無窮大的控制量是不現(xiàn)實的。
+ P* k2 q! C- G+ r% H
2 k2 u8 g, e  z( f. W, T. A
) F1 W! ], S  J- _9 v& j7 s2 E! X
2、控制量的大小通常和能量、物料的消耗連在一起,實際控制問題一般是“在最小能量、物料消耗小達(dá)到最高的控制精度”,所以在“山峰”中同時包含控制偏差和控制量是很自然的。
! r. F4 G3 ~) i  a. g* b! i, s4 z2 n
5 h5 j  \2 k) T, I/ n' k& {" ~
  k* R+ T8 {7 Q9 k+ P( T  P1 L
3、系統(tǒng)模型總是有誤差的,誤差“總是”在高頻、大幅度控制作用下最突出,所以為了減低系統(tǒng)對模型誤差的敏感性,也有必要限制控制量的大小。' U( G! Q! Y/ \: Y  W; ]

( d& x8 i, s, t1 E: |4 S& I; n
; D7 e/ G4 P# W" U" u* V) h* v+ d9 M& e9 k9 H7 q7 v3 Y6 K
所以線性二次型最優(yōu)控制的“目標(biāo)函數(shù)”(也就是定義山峰形狀的數(shù)學(xué)表述)是一個控制偏差和控制量各自平方的加權(quán)和的積分。積分當(dāng)然就是“在時間上的累積”了,加權(quán)和其實就是在控制偏差的平方項和控制量的平方相前分別乘以比例因子,然后再相加。兩個比例因子的相對大小決定了誰更重要。運(yùn)用矩陣微分和線型代數(shù)工具,不難導(dǎo)出線性二次型控制律—一個基本的狀態(tài)反饋控制律!只是反饋增益矩陣是按最優(yōu)化的要求計算出來的。
1 {- v7 n, t' Q# P1 @8 w
  S  t" E5 G9 p2 K1 w
1 q0 G0 I( ~3 Q0 S! k
1 j/ t9 H4 L  A1 ]  Z線型二次型最優(yōu)控制開創(chuàng)了一整個新的控制領(lǐng)域,很快從狀態(tài)空間走出來,進(jìn)入其他領(lǐng)域,子孫繁衍,人丁興旺。這一支是當(dāng)今最優(yōu)控制在應(yīng)用中的主體。9 ^+ Z, Y. ~) F' o& Q
0 x1 R6 V1 ^& u0 c( O

  J$ ^+ w: `6 |$ ?% Q+ }' O/ Z
& P( D* Y5 m: e/ e( j! \; e8 P! `線性二次型控制具有各種各樣的優(yōu)點(diǎn),但是,線性二次型沒有回答一個最基本的控制問題:這個閉環(huán)系統(tǒng)是不是穩(wěn)定。這里,我們的飽受牽記的李亞普諾夫同志出場了。李亞普諾夫也是一個腦子搭錯筋的人,一百多年前,玩微分方程玩出了癮,整出兩個穩(wěn)定性(或者叫收斂性)的定理,前一個沒有什么太了不起的,把非線性系統(tǒng)線性化,就是把一根曲線用很多一小段、一小段的直線近似,然后按直線來分析。后一個就有點(diǎn)邪門了。老李琢磨出一個定理,說是對于任意一個系統(tǒng),如果能找到一個自我耗散的能量函數(shù)(數(shù)學(xué)說法是正定函數(shù)),也就是其數(shù)值永遠(yuǎn)為正,但隨時間漸進(jìn)地趨向零,或者說這個能量函數(shù)對時間的導(dǎo)數(shù)永遠(yuǎn)為負(fù),那這個系統(tǒng)就是穩(wěn)定的。據(jù)說定理的證明是一個天才的杰作,我等凡人只有頻頻點(diǎn)頭的份。不過想想也對,系統(tǒng)的能量耗散沒了,系統(tǒng)不也就安分下來了嗎?當(dāng)然就穩(wěn)定嘍。" v! r6 U7 x0 w  b3 Z
( E5 G4 P# U6 `8 A8 w

, A/ s, M6 P) ^/ ^) g, E) U
2 ^9 \1 v! S4 R# x. l0 G李亞普諾夫比卡爾曼還要數(shù)學(xué)家,他的定理只給出“如果存在……就……”,怎么找這個自我耗散的能量函數(shù)他沒說,這個函數(shù)一般是什么樣他也沒說。這難不倒搞自動控制的廣大革命群眾。不是要正定函數(shù)嗎?不是沒有限制什么形式的正定函數(shù)嗎?那就用控制偏差的平方吧。說干就干,但是干著干著,好玩的事情出現(xiàn)了,對偏差平方(或二次型)的求導(dǎo),導(dǎo)出了和線性二次型最優(yōu)控制推導(dǎo)過程中同樣出現(xiàn)的一個所謂黎卡蒂方程(Riccatiequation),感情這是殊途同歸呀。換句話說,線性二次型控制總是穩(wěn)定的。這是線性二次型控制的一個重要貢獻(xiàn):把最優(yōu)性和穩(wěn)定性連到一起。
6 P$ ~" Q3 n" R0 S* `/ f" z% j% g2 [, @/ e% X' p9 ]

* `# X2 s& g2 d/ R8 O; L( Z4 B7 r
再扯一句李亞普諾夫,他的第二個定理非常威猛,但是有點(diǎn)像一個奇形怪狀的大錘,到現(xiàn)在人們還在找合適的釘子,好用這把大錘砸?guī)紫?。線性二次型控制是已知的僅有的幾個釘子之一,另一個是變結(jié)構(gòu)控制,也可以用李亞普諾夫方法,這是題外話了。
3 h) A# J+ h* K. K) M0 \
& _( V: b' [7 V& @: X; z5 R! a $ P- k8 O/ e+ [) Y3 r

$ |, t2 \1 U5 z數(shù)字控制, k/ f% R) G+ _" X) c, G

3 U( g2 c1 P- K! I+ S7 X1 V8 Q , M: E' t# m. P$ W* A
% Z3 `+ q6 z7 l8 Z
都說瓦特的蒸汽機(jī)后,計算機(jī)是影響人類進(jìn)程最大的發(fā)明,計算機(jī)當(dāng)然也對自動控制帶來深刻的影響。如前所述,控制理論基本上都是圍繞微分方程轉(zhuǎn)的,所以在“本質(zhì)”上是連續(xù)的。但是數(shù)字計算機(jī)是離散的,也就是說,數(shù)字控制器的眼睛不是一直盯著被控對象看的,而是一眨一眨的。數(shù)字控制器的“手腳”也不是一刻不停地連續(xù)動作的,而是一頓一頓的。這是數(shù)字計算機(jī)的天性使然。于是,傳統(tǒng)的控制理論全部“翻譯”到離散時間領(lǐng)域,微分方程變成了差分方程,所有方法、結(jié)論都有了連續(xù)、離散兩套,不盡相同,但是大同小異。, t3 J2 s" m' o. B# v

) \- E& f: K% I" D% t! a ; ^# q8 l* i$ Y6 E

% l8 x  R! P9 [4 U& O要是數(shù)字控制就是簡單的連續(xù)系統(tǒng)離散化,計算機(jī)控制也就沒有什么了不起。離散控制帶來了一些連續(xù)控制所不可能具備的新特點(diǎn),這就是:差分方程用清晰界定的時刻之間的關(guān)系來描述動態(tài)過程。回到洗熱水澡的例子,如果熱水龍頭不在跟前,而是在村外一里地的小鍋爐房里,你只能用電話遙控,那水溫或許可以表示為
, E3 A1 d% h; q* X" n
+ ?- c! H! p5 C ) k# K: b+ N. F" L! t

7 Y$ P, l! |* y9 @% f9 o. H5 m6 v) p下一分鐘水溫=0.7*現(xiàn)在水溫+0.2*上一分鐘水溫+0.1*再上一分鐘水溫+0.4*(5分鐘前鍋爐房龍頭開度-6分鐘前鍋爐房龍頭開度)0 _% Z. `  _; F0 F; ?

; f6 A& x- `$ b' W # }+ K5 }1 x7 g$ Q
6 W  A9 ]; j$ f1 Z& s
顯然,下一分鐘的水溫受現(xiàn)在水溫的影響比上一分鐘和再上一分鐘的水溫的影響要大,但鍋爐房龍頭開度要是不變,現(xiàn)在、上一分鐘、再上一分鐘水溫都一樣的話,下一分鐘的水溫也應(yīng)該和現(xiàn)在的水溫一樣。為什么用5分鐘前鍋爐房的龍頭開度呢?那是因為熱水從村外流到洗澡房要有一定的時間,這個時間就是滯后。要是把時間向前推,那現(xiàn)在的龍頭開度就會影響5分鐘后的水溫。這說明了離散模型的一個重要特質(zhì):預(yù)估能力。所有預(yù)報模型都是建立在離散模型的這個預(yù)估能力上,不管是天氣預(yù)報,還是經(jīng)濟(jì)預(yù)測,還是自動控制里對有滯后的過程的控制。
2 f  _7 O" B- Z7 o& G: J
- ?* G4 K! x- d/ g: c# S & P$ p6 [1 k/ t% f' ^* a  {& |/ F

& g  p2 U( C6 X  [/ o: n數(shù)字控制的另一特質(zhì)是可以實施一些不可能在連續(xù)時間實現(xiàn)的控制規(guī)律。工業(yè)上常有控制量的變化需要和當(dāng)前的實際值有關(guān)的情況。比如對于不同的產(chǎn)品,反應(yīng)器的轉(zhuǎn)化率總是大體在88-92%之間,沒有太大的變化,但是催化劑可以在0.5到35ppm之間變化,采用常規(guī)的PID的話,增益就非常難設(shè),對一個情況合適了,對另一個情況就不合適。所以催化劑需要按百分比變化率調(diào)整,而不是簡單地按偏差比例調(diào)整。比如說,轉(zhuǎn)化率偏離1%時,催化劑要是在0.5ppm,應(yīng)該調(diào)整0.05ppm;但是在15ppm的時候,就應(yīng)該是1.5ppm。這樣,控制律就可以表示為/ B7 }) Q6 [1 `6 h- t& N! N! T
9 u5 s% u1 m' W& l/ Z

  e+ S- U" v: {  h1 M
+ ~2 e6 ^' `* s, W- S) e0 W當(dāng)前的控制量=上一步的控制量*(設(shè)定值/當(dāng)前的測量值)# |/ t, Z3 i, ^
% t6 Z- A# g) `: n- n
2 _6 }( P8 g4 [2 F/ G( s- n
5 n* F' f# s, @1 b
也就是說,在被控變量高于設(shè)定值10%的情況下,控制量也增加10%;測量值和設(shè)定值一樣時,控制量不再變化。實際使用時,誰除以誰要根據(jù)測量值上升你是要控制量上升還是下降來決定,控制律也要稍微修改一下,成為
* }! p; O0 Q& k! Y) p# @3 O( {" h
1 d8 W6 L5 v# p 8 |& g0 ]; q& u: U9 V
0 ^) f1 e0 X( {/ @- R
當(dāng)前的控制量=上一步的控制量*(當(dāng)前的測量值/設(shè)定值)^k
" v5 R1 \1 Q+ a$ k% d
( _3 t" O0 k* j8 y ; h. w6 y5 p. S- X" O8 A

7 G2 l7 p" t/ D8 ~; R9 R' p/ qk次方是用來調(diào)整控制律對“偏差”(這是已經(jīng)不是差值,而是比值了,嚴(yán)格地說,應(yīng)該叫“偏比”?)的靈敏度,相當(dāng)于比例增益。這個控制律實際上相當(dāng)于對數(shù)空間的純積分控制,要是有興趣,對很多常見的非線性過程有相當(dāng)不錯的效果,實現(xiàn)也簡單。然而,這是一個本質(zhì)離散的控制律,在連續(xù)時間里無法實現(xiàn)。
. T# s7 s! i! ?  B4 y- r% @6 @0 j
8 r* `9 v# y; y , L" S2 ~$ u4 I! p! A6 A3 ?3 a

6 a' N  B% f* U離散控制可以“看一步、走一步”的特性,是連續(xù)控制很難模仿的,也是在實際中極其有用的。
+ d0 l% P+ i/ E& g" |) C# i: L4 e& `- ?# c' P7 _- _+ `- [  b
1 E8 u+ o3 {% j0 @. p* w( c% s
/ i2 G% Q0 j, ]& C3 ]& u
辨識
$ h* c; @7 F7 g9 @$ @" e5 \, k3 Y6 L
2 U9 V5 F9 d( m; J ; o; K$ u0 g5 C$ H3 M  r# H% k

" Y9 l' u" j" V6 g8 ?: O形形色色的控制理論再牛,沒有被控過程的數(shù)學(xué)模型,照樣抓瞎。前面的洗澡水溫就是一個數(shù)學(xué)模型。這個模型是杜撰的,當(dāng)然可以很容易地給它所有模型參數(shù)。但在實際中,模型參數(shù)不會從天上掉下來。多少科學(xué)家畢生致力于建立某一特定的物理、生物、化學(xué)或別的學(xué)科的數(shù)學(xué)模型,基本機(jī)制已經(jīng)清楚的模型都不容易建立,更不用說很多過程的基本機(jī)制或深層機(jī)制并不清楚。所以靠機(jī)理推導(dǎo)被控過程的數(shù)學(xué)模型是可能的,但對日常的控制問題來說,并不實際。這就是控制理論的另一個分支—辨識—一顯身手的地方了。# L5 n! C# L. p2 \. O
6 s/ r  p; e) b: t/ x# E( L% D
4 w7 [6 f/ ?# p( U* I

1 L# y: X; k/ U9 V6 G0 h. t% J如果給定一個模型,也就是一個數(shù)學(xué)公式,給它一組輸入數(shù)據(jù),模型就可以計算出對應(yīng)的輸出數(shù)據(jù)。比如說,給定模型y=2*x+1,再給出x=1,2,3,4,那y就等于3,5,7,9,就這么很簡單。辨識的問題反過來,先給定一個模型結(jié)構(gòu),在這里就是y=a*x+b,已知輸入-輸出數(shù)據(jù)是x=1,2時y=3,5,要求計算出a和b。顯然,這是一個二元一次方程,誰都會解。在實際中,輸入-輸出的觀察數(shù)據(jù)含有測量噪聲,這對參數(shù)估計的精度不利;但通常積累觀察的數(shù)據(jù)量遠(yuǎn)遠(yuǎn)超過未知參數(shù)的個數(shù),不說數(shù)學(xué),感覺上這就應(yīng)該對克服測量噪聲有利,關(guān)鍵是怎么利用這“多余”的數(shù)據(jù)。一個辦法是把數(shù)據(jù)組兩兩配對,借眾多的二元一次方程,然后對解出來的a和b作平均。還有一個辦法就是有名的最小二乘法了,說穿了,就是以a和b為最優(yōu)化的“控制量”,使模型輸出和實際觀測值之間的累積平方誤差為最小。. N6 e, D* I3 Q
7 c4 o: U/ S. I% L. d( D* t  k

6 s: {! I, A$ R5 g" [5 K* x9 N! T0 |7 f
實際工業(yè)過程大多有多年的運(yùn)行經(jīng)驗,大量的數(shù)據(jù)不成問題。對于大多數(shù)常見過程,模型的基本結(jié)構(gòu)和定性性質(zhì)也可以猜一個八九不離十,有了如此有力的數(shù)學(xué)“大錘”,那么應(yīng)該可以砸開一切建模的硬核桃啦。且慢,世上沒有真正的“神奇子彈”,一個問題解決了,另一個同等難度的問題又會出現(xiàn)。對于辨識來說,問題有好幾個。5 i) I, b( ?% t% l2 S

; O( a( M" s1 ^( |3 r) V 2 I0 e5 @+ r! I& c, b

0 J, z( l! ]- M1 Z9 e. ^第一個問題是工業(yè)數(shù)據(jù)的閉環(huán)性。大多數(shù)重要參數(shù)都有閉環(huán)回路控制。如果沒有閉環(huán)回路控制,那要么就是過程特性實在太復(fù)雜,簡單回路控制不了;要么就是這個參數(shù)其實不重要,飄移一點(diǎn)沒人在乎。然而,一旦閉環(huán),系統(tǒng)地輸入和輸出就是相關(guān)的了。這一相關(guān)不要緊,輸入-輸出數(shù)據(jù)之間的因果性就全亂了:輸出通過被控過程本身和輸入相關(guān)(這是好的,辨識就是要測算出這個相關(guān)關(guān)系,輸出要是和輸入不相關(guān),也沒有控制或辨識什么事了),輸入通過反饋和輸出相關(guān);輸入-輸出成為一個閉合系統(tǒng),你可以用任意多條定理或方法證明同樣的事:由于因果不分,閉環(huán)辨識是不可能的,除非另外加入“新鮮”的激勵,比如使勁變設(shè)定值,或者在閉環(huán)回路里額外施加獨(dú)立于輸入、輸出的激勵信號,比如“莫名其妙”地把閥門動幾下。弄到最后,工業(yè)數(shù)據(jù)到底能用多少,就不是一個簡單的回答。有的過程常年穩(wěn)定操作,像乙烯裝置,只有小范圍的微調(diào)。這倒不是人家懶或者不求上進(jìn),而是這些裝置早已高度優(yōu)化,常年操作在極其接近極限的位置,但原料和產(chǎn)品單一,所以工藝狀況不怎么大變。這種系統(tǒng)的閉環(huán)數(shù)據(jù)用起來很吃力,常常必須做一定的開環(huán)試驗。有的過程經(jīng)常在不同的狀態(tài)之間轉(zhuǎn)換(transition),或者由于不同的原料,如“吃”得很雜的煉油廠,或者由于不同的產(chǎn)品,如聚乙烯裝置,這實際上就是“使勁變設(shè)定值”,是新鮮的激勵。這種系統(tǒng)的閉環(huán)數(shù)據(jù)比較好用,但有別的問題,下面要談到。
6 F5 `2 T5 n( u) G- n' y# W6 }3 B. L2 q0 A+ J# S

: ?4 k  C0 n! r9 w& q
5 a! q, C2 o4 A6 D3 h* l% y第二個問題是動態(tài)和穩(wěn)態(tài)。動態(tài)模型的作用有兩個:一是描述需要多少時間輸出才能達(dá)到某一數(shù)值;二是輸出最終能夠達(dá)到什么數(shù)值。用股票市場舉一個例子,你需要知道兩件事:一是這支股票最后會升到多少,二是需要多少時間才能升到那里,只知道其中一個對你并沒有太大的用處。當(dāng)然為了簡化,這里假定這支股票一路飆升,不來忽升忽降(也就是非線性)或跌買漲賣(也就是閉環(huán)影響)的名堂。這就要求輸入-輸出數(shù)據(jù)必須包含充分的動態(tài)和穩(wěn)態(tài)信息,過于偏頗其中一方面對另一方面會不利。所以,長期穩(wěn)定運(yùn)行的過程中可能包含足夠的穩(wěn)態(tài)數(shù)據(jù),但動態(tài)不足;常年不怎么穩(wěn)定的過程可能包含足夠的動態(tài)數(shù)據(jù),但穩(wěn)態(tài)不足。用PID控制打比方,精確的穩(wěn)態(tài)數(shù)據(jù)有助于計算正確的比例控制增益,精確的動態(tài)數(shù)據(jù)有助于計算正確的積分和微分增益,顯然,把比例增益整對了更為重要。為了獲得精確的穩(wěn)態(tài),在辨識中常常需要等過程開環(huán)穩(wěn)定下來才進(jìn)行下一步,但是問題是,實際過程有時時間常數(shù)很長,幾個精餾塔一串聯(lián),時間常數(shù)幾個小時是客氣的,一、兩天都是可能的。這樣一來,一個不太大的模型,十來個變量,開環(huán)試驗一做就是一、兩個星期或者更長。要是一個裝置能夠兩個星期開環(huán),那也不需要什么控制了。
$ k& g  X, z' r- N! P) i& K- F: L  n3 [, |$ m

. H1 ~; S/ T5 G0 A3 x6 c
: l" o: ?% w/ x! k; n- F第三個問題是激勵的信噪比。都說人類活動是二氧化碳和溫室效應(yīng)的主要原因,但要是你去生一堆篝火,再去高空大氣層去測一測二氧化碳和溫室效應(yīng),肯定什么也測不出來,本來多少,現(xiàn)在還是多少。為什么呢?不是因為這堆篝火沒有效果,而是環(huán)境中的自然的變化遠(yuǎn)遠(yuǎn)超過了篝火的作用,換句話說,就是噪聲遠(yuǎn)遠(yuǎn)超過了信號。工業(yè)測試也是一樣,信號一定要有一定的強(qiáng)度,否則是白耽誤工夫。信號強(qiáng)度應(yīng)該使過程達(dá)到嚴(yán)重失穩(wěn)的邊緣,這樣才好獲得在大范圍內(nèi)都精確的模型,以便控制器不光在“風(fēng)平浪靜”的情況下可以正常工作,在“驚濤駭浪”的情況下也能使系統(tǒng)恢復(fù)穩(wěn)定。然而,工廠以生產(chǎn)為主,在一切都“斤斤計較”的今天,如此大范圍的測試所帶來的產(chǎn)品損失甚至對設(shè)備的可能的危害,都是工廠極不愿意見到的。理論家們設(shè)計了一個偽隨機(jī)信號,用一連串寬窄不等的方波信號,作為激勵過程的輸入,在理論上可以使過程參數(shù)的平均值不致偏離設(shè)定值太多,但I(xiàn)SO9000不僅要求產(chǎn)品質(zhì)量的平均值要保證,產(chǎn)品質(zhì)量的一致性也要保證。再說,偽隨機(jī)信號的脈寬不好確定,太窄了,穩(wěn)態(tài)數(shù)據(jù)不夠;太寬了,和常規(guī)的階躍信號也沒有什么兩樣。所以偽隨機(jī)信號在實際上用得很少。
6 N7 z# {$ m, M5 D: d, W
: H0 Q/ G$ Y, I, @% c0 N3 O% l1 r
9 u. W- W; Q" a& [, `6 |( L9 b9 x+ z! I- y5 u  \  D& i
第四個問題是輸入的相關(guān)性。實際工業(yè)過程到了要用辨識來確定模型的時候,都是單回路對付不了了,所以都是多變量過程。在理論上,多個輸入變量可以同時變化,只要輸入變量的變化是相互獨(dú)立的,數(shù)學(xué)上容許多個輸入變量同時變化,而辨識可以正確地辨別模型。然而,在使用實際過程的歷史數(shù)據(jù)時,常常遇到多個輸入變量并不相互獨(dú)立的問題。比如說,在制作巧克力的過程中,香草巧克力比較“苦”,或者說不太甜,而牛奶巧克力比較甜。問題是做牛奶巧克力時,不光加糖,還要加牛奶(廢話,不加牛奶那還是牛奶巧克力嗎?)由于兩者總是同時出現(xiàn),從純數(shù)學(xué)角度來說,在甜度模型里,就難以辨別甜度是由于加糖的關(guān)系,還是由于加牛奶的關(guān)系。有的時候可以根據(jù)對具體過程的認(rèn)識,人工地限制辨識的過程,來消除這種影響,有的時候,就不太容易了,只好不用歷史數(shù)據(jù),專門做試驗,用各自獨(dú)立的輸入,便是模型。
7 O$ @* U9 T; t6 F9 B/ P
5 ^0 a1 f) U$ t* j) j) K
, P: g0 ?+ ]7 ~- [' v, v) r$ n2 L" n% M, u8 w6 v
第五個問題是模型結(jié)構(gòu)。模型結(jié)構(gòu)包括兩個方面,一是模型的階數(shù),二是剔除在物理上不可能的模型。辨識的模型歸根結(jié)蒂還是差分方程,這就有一個如何預(yù)設(shè)階數(shù)的問題。數(shù)學(xué)上有很多驗前和驗后的檢驗方法,在工業(yè)上,人們偷一個懶,改用非參數(shù)模型,也就是用一條響應(yīng)曲線而不是一個方程來表述一個模型,這樣就可以繞過階數(shù)的問題。但是剔出不現(xiàn)實的模型還是一個手工活,需要對每一個模型仔細(xì)研究,以確定模型所描述的動態(tài)關(guān)系是否合理。數(shù)學(xué)方法還是不夠可靠。
. V  Q! ?$ R/ }, z  W& F) N' p9 |7 o6 e% @. q
# U5 W7 k6 U5 `+ ~$ G* c% m

6 ?, y7 I9 @, z4 X在搞模型的人中間,常常會聽到黑箱、白箱和灰箱的說法。黑箱模型就是不理會實際過程的物理、化學(xué)等性質(zhì),純粹從數(shù)學(xué)出發(fā),假設(shè)一個模型結(jié)構(gòu),然后用種種數(shù)學(xué)方法找出一個最好的模型。白箱反其道而行之,從物理、化學(xué)等性質(zhì)出發(fā),建立機(jī)理模型。黑箱模型的好處是“放之四海而皆準(zhǔn)”,不需要對具體過程有深入的了解。黑箱模型是一種削足適履的作法,但是如果履本身就做得比較好,具有相當(dāng)?shù)撵`活性和適應(yīng)性,就并不需要削太多的足。由于黑箱模型可以自由假設(shè)模型結(jié)構(gòu),黑箱模型的處理和使用都比較方便。黑箱模型是經(jīng)驗主義的,數(shù)據(jù)里沒有包含的情況,黑箱模型無法預(yù)測。白箱模型則是“量身度造”的,反映了過程的物理、化學(xué)等性質(zhì),對實際過程的數(shù)據(jù)依賴較少,對數(shù)據(jù)中不包含的情況也能可靠地預(yù)測。但是白箱模型的結(jié)構(gòu)由具體問題決定,得出的模型不一定容易使用。在實際中,人們經(jīng)常在假設(shè)一個模型結(jié)構(gòu)的時候考慮進(jìn)大大簡化的過程機(jī)理,所以模型結(jié)構(gòu)不是憑空拍腦袋出來,而是粗略地抓住了過程的基本特質(zhì),然后再用黑箱方法的“數(shù)據(jù)絞肉機(jī)”,將簡化模型沒有能夠捕捉的細(xì)微末節(jié)一網(wǎng)打盡。這種模型結(jié)合了黑箱和白箱的特點(diǎn),所以稱為灰箱。實際建模中,純粹黑箱或白箱的成功例子很少,灰箱的成功機(jī)會就要多得多。
( [+ y, ~& w, ]9 z) p" G3 [& x6 M4 D& P3 P$ D+ ?4 l4 W3 {& f

6 [. V# B* {/ ^7 p
4 z' P6 ?! j* ]0 F) c不管什么箱,最后還是有一個如何辨識實際過程的問題。閉環(huán)辨識的好處不用多說了,問題是如何從閉環(huán)辨識中獲得有用的模型。工業(yè)上有一個辦法,沒有一個“官名”,但實際上是一個開環(huán)-反饋過程。具體做法是這樣的:先用粗略的過程知識構(gòu)造一個簡單的多變量控制器,其任務(wù)不是精確控制被控過程,而是將被控變量維持在極限之內(nèi),一旦逼近或超過極限,就采取動作將其“趕”回極限內(nèi);但只要在極限內(nèi),就按部就班地作階躍擾動,測試過程特性。測試的結(jié)果用來改進(jìn)控制器的模型,然后再來一遍。幾遍(一般兩遍就夠了)之后,模型精度應(yīng)該很不錯了。這個方法比較好地解決了辨識精度和過程穩(wěn)定性的要求。7 U# }# f+ C& U' A" O: l
% Z9 x  c3 l0 a6 }3 Y

" c' y" z7 n) X4 z) G( p2 E9 ~' O9 C' }! a
自適應(yīng)
/ o# S- T' k# F5 ?! m* X1 ?7 p5 F+ p3 w4 J6 {8 Q

. L* t. v( d$ K1 c8 y/ `1 }8 Y/ x) {  I0 O
西游記里最好看的打斗是孫悟空大戰(zhàn)二郎神那一段。孫悟空打不過就變,二郎神則是“敵變我變”,緊追不舍,最后把個無法無天的頑皮猴子擒拿歸案。用控制理論的觀點(diǎn)看,這“敵變我變”的本事就是自適應(yīng)控制控制器結(jié)構(gòu)根據(jù)被控過程的變化自動調(diào)整、自動優(yōu)化。
, M3 {0 I7 e7 ~3 P0 o% ^3 q8 m0 ]% Q
" [* M, ?8 a5 c1 F' }

8 x7 u  ~# v* C4 h. y) b" \自適應(yīng)控制有兩個基本思路,一是所謂模型跟蹤控制,二是所謂自校正控制。模型跟蹤控制也叫模型參考控制,在概念上對人們并不陌生。毛主席那陣子,經(jīng)常樹立各種榜樣,目的就是要在黨發(fā)出號召時,普通人們比照榜樣的行為,盡量調(diào)整自己的行為,使我們的行為和榜樣的行為接近。這就是模型跟蹤控制的基本思路。模型跟蹤控制在航空和機(jī)電上用得比較多,在過程控制中很少使用。
" R# \3 I2 o/ A* r8 _- g5 v% S( i  a1 f. l
' {) [! P$ F& R/ _5 [% y
4 L; |  [3 D& v% E' I
自校正控制的思路更接近人們對自適應(yīng)的理解。自校正控制是一個兩步走的過程,首先對被控過程作實時辨識,然后再辨識出來的模型的基礎(chǔ),實時地重新構(gòu)造控制器。思路簡單明了,實施也不算復(fù)雜,但自校正控制在一開始的歡呼后,并沒有在工業(yè)上取得大范圍的成功,原因何在呢?
6 e+ v: `' o+ J. J; c+ l) `2 r! W% q( ~( d2 A) O4 S: g% E! F4 q

- O* v! y& s  Y! Q
! F6 n$ j2 q6 K; y" x6 |原因之一是閉環(huán)辨識。雖然自校正控制不斷改變控制器的參數(shù),在一定程度上打破了固定增益反饋控制對輸入、輸出帶來的因果關(guān)系,但是因果關(guān)系還是存在,還是相當(dāng)強(qiáng)烈,對辨識模型的質(zhì)量帶來影響。; q& D- L2 T9 T! U
+ e: \* B4 G) N
  F6 O; D$ b$ J

  G% {( }9 o  r8 z1 x2 A, U" p3 ?7 u原因之二是所謂“協(xié)方差爆炸”。數(shù)學(xué)上當(dāng)然有嚴(yán)格的說法,但簡單地說,就是自校正控制器的目的當(dāng)然還是使系統(tǒng)穩(wěn)定下來,但是在系統(tǒng)越來越穩(wěn)定的過程中,自校正控制器對偏差和擾動的敏感度越來越高,最后到“萬籟俱靜”的時候,敏感度在理論上可以達(dá)到無窮大,然而,這時如果真的擾動來了,控制器一下子就手足無措了。$ c' ]4 g# q  @( K7 r$ A* A# c/ [2 o
" C# I' \  s  `4 z7 I* R; P0 {5 d5 M

, W6 Q2 \, C3 E" o+ H9 u  C+ U$ A  E# D' ]& g
原因之三是實際過程的復(fù)雜性。在辨識實際過程時,最重要的步驟不是后面的“數(shù)學(xué)絞肉機(jī)”,而是對數(shù)據(jù)的篩選,必須把各種異常數(shù)據(jù)剔除出去,否則就是“垃圾進(jìn)來,垃圾出去”。但是,要實時、自動地剔除異常數(shù)據(jù),這個要求非同小可,比設(shè)計、投運(yùn)一個自校正控制器費(fèi)事多了。這是自校正控制在實際中成功例子有限的最大原因。
4 w8 v0 X. _# l$ r
+ d9 [4 g7 y* k: _3 |4 t
4 }, m" V* ^. R. ~( I! H6 b1 [1 O2 P
模型預(yù)估控制
2 _1 u+ P$ p1 M) S5 F& j' K
& Z& V4 @! [1 ^5 R8 F- ] - A* B5 i8 Z  \4 k2 a7 r) Q  w8 z: ~

9 ]* ~- c; x3 c6 M% W- M自動控制從一開始就是以機(jī)電控制為主導(dǎo)的。60年代數(shù)學(xué)派主導(dǎo)了一段時間后,70年代化工派開始“小荷才露尖尖角”。自校正控制已經(jīng)有很多化工的影子,但化工派的正式入場之作是模型預(yù)估控制(modelpredictivecontrol,MPC)。這是一個總稱,其代表作是動態(tài)矩陣控制(dynamicmatrixcontrol,DMC)。DMC是CharlieCuttler的PhD論文,最先在殼牌石油公司獲得應(yīng)用,以后Cuttler自立門戶,創(chuàng)辦DMC公司,現(xiàn)在是AspenTechnology公司的一部分。
( P# h9 k) l8 D8 |, V4 {% x* i$ X  C
" d9 _" [6 f7 k4 q4 B$ w3 ]$ q. v
9 f, {" G6 K. z7 t0 R1 ]+ _, o數(shù)學(xué)控制理論非常優(yōu)美,放之四海而皆準(zhǔn),但是像老虎一樣,看起來威猛,卻是干不得活的,干活畢竟靠老牛。DMC的成功之處在于應(yīng)用偽理論,將一些本來不相干的數(shù)學(xué)工具一鍋煮,給一頭老老實實的老牛披上一張絢爛的老虎皮,在把普羅大眾唬得一愣一愣的時候,悄悄地把活干了。
15#
發(fā)表于 2015-10-14 13:57:34 | 只看該作者
DMC基本就是把非參數(shù)模型(在這里是截斷的階躍曲線)放入線性二次型最優(yōu)控制的架構(gòu)下,成功地解決了解決了多變量、滯后補(bǔ)償和約束控制問題。多變量的含義不言自明,滯后放在離散動態(tài)模型下也很容易實現(xiàn)預(yù)測,這也沒有什么稀奇。稀奇的是,DMC用“土辦法”解決了約束控制問題。所有實際控制問題的控制量都有極限。加速時,油門踩到底了,那就是極限,再要多一馬力也多不出來了。龐特里亞金的最大值原理在理論上可以處理約束控制問題,在實際上很難求出有用的解來,最速控制是一個特例。那DMC是怎么解決約束控制問題的呢?當(dāng)某個控制量達(dá)到極限時,這個控制量就固定在極限值上了,這就不再是變量,而是已知量,把已知量代進(jìn)去,將控制矩陣中相關(guān)的行和列抽掉,重新排列矩陣,剩余的接著求解。這也沒有什么稀奇。令人頭疼的是如何處理輸出約束的問題。DMC把線性規(guī)劃和控制問題結(jié)合起來,用線性規(guī)劃解決輸出約束的問題,同時解決了靜態(tài)最優(yōu)的問題,一石兩鳥,在工業(yè)界取得了極大的成功。自卡爾曼始,這是第一個大規(guī)模產(chǎn)品化的“現(xiàn)代控制技術(shù)”,Cuttler在DMC上賺了大錢了,在“高技術(shù)泡沫”破碎之前把公司賣給AspenTechnology,更是賺得缽滿盆溢。他女婿是一個醫(yī)生,也不行醫(yī)了,改行搞過程控制,跟著Cuttler干了。8 ^# O2 k$ S, R! x' I* A: ~
' P  p( T- Q. W+ U
DMC的英明之初在于從實際需要入手,不拘泥于理論上的嚴(yán)格性、完整性,人參、麻黃、紅藥水、狗皮膏藥統(tǒng)統(tǒng)上,只要管用就行。在很長一段時間內(nèi),DMC的穩(wěn)定性根本沒有辦法分析,但是它管用。搞實際的人容易理解DMC的歪道理,但搞理論的人對DMC很頭疼。
2 w6 w) G% v- h/ u. @5 e 6 _+ Y  ~- s6 _: N) T7 A. _$ F
DMC打開局面后,一時群雄蜂起,但塵埃落定之后,包括DMC,如今只有三家還在舞臺上。Honeywell的RMPCT(RobustMultivariablePredictiveControlTechnology)是一個中國同胞開創(chuàng)的,他的獨(dú)特之處在于引入“漏斗”概念。大部分控制問題都有一個特點(diǎn):如果擾動當(dāng)前,有一點(diǎn)控制偏差是可以容忍的;但時間一長,控制偏差應(yīng)該消除。換句話說,這就像一個時間軸上對偏差的橫放的漏斗。這個概念對復(fù)雜過程的MPC參數(shù)整定非常有用,已經(jīng)在別的公司的產(chǎn)品上也出現(xiàn)了。
- h. [3 [1 {$ b- r7 F( m7 Z0 _ 3 Q- z8 W+ a6 |
第三家就是方興正艾的PavilionTechnology的Perfecter。美國公司有一個壞毛病,喜歡對好好的產(chǎn)品取一個不倫不類的名字,不過現(xiàn)在也改名了,規(guī)規(guī)矩矩叫controller了。Perfecter的特色是將神經(jīng)元技術(shù)(neuralnet)和MPC結(jié)合起來,所以可以有效地處理非線性過程。神經(jīng)元模型沒有什么神秘的,說穿了,就是具有某些特定復(fù)雜形式的回歸模型,但是比回歸模型更不適宜內(nèi)插和外推。DMC也號稱可以處理非線性,因為即使階躍響應(yīng)曲線拐上幾拐,DMC照樣囫圇吞棗,可以計算控制輸出來,這就是非參數(shù)模型的好處。但是問題在于DMC的結(jié)構(gòu)框架畢竟還是線性的,階躍響應(yīng)的概念根本不適合非線性過程,因為非線性響應(yīng)和輸入的絕對數(shù)值、相對變化甚至變化方向有關(guān),甚至可以更復(fù)雜,所以所謂DMC可以處理非線性是放空炮。如果實際過程的非線性不強(qiáng),根本可以忽略它;如果實際過程有很強(qiáng)的非線性,DMC肯定抓瞎。那么,Perfecter用了神經(jīng)元,是不是就所向披靡了呢?也不盡然。Perfecter繼承了DMC不問理論、唯實用是問的好傳統(tǒng),但是Perfecter的基本骨架還是線性的MPC,只是用靜態(tài)的神經(jīng)元模型時不時地作一個線性化。Perfecter在理論上乏善可陳,在實用上還是管用的。
. L% L- {7 h. L4 X9 s! Y 3 |1 s& r  e, B0 e
前面說到PID在當(dāng)今過程控制中占至少85%,那MPC就要占14.5%了。
6 i" Q* G) b- N$ X
! O! b) }6 {7 t, _( C0 W" n1 n計算機(jī)控制系統(tǒng)
- S! ~4 F) I- ?/ c # G# a1 L& d% Q8 S2 I
計算機(jī)對自動控制的影響要是只局限在離散控制理論上,那也就不是計算機(jī)控制了。事實上,80年代以后新建的化工廠,基本都采用計算機(jī)控制。說是可以采用比PID更先進(jìn)的技術(shù),實際上,絕大多數(shù)還是在用PID,加上順序控制,按部就班地執(zhí)行一系列動作。那計算機(jī)控制的好處到底在什么地方呢?
2 P( N$ G  X7 v5 ^3 R - g5 w) `6 p7 P+ D" i7 N
過程控制的實際裝置最初全是直接安裝在現(xiàn)場 的,后來出現(xiàn)氣動單元儀表,可以把壓縮空氣的信號管線從現(xiàn)場拉到中心控制室,操作工可以在中控觀察、控制全廠了。電動單元儀表防爆問題解決后,中控的使用 更加廣泛。操作工坐在儀表板前,對管轄工段的情況一目了然。但是隨著工廠的增大和過程的復(fù)雜,儀表板越來越長,一個大型化工廠隨隨便便就可以有上千個基本 控制回路和上萬個各種監(jiān)控、報警點(diǎn),儀表板非有幾百米長不可,這顯然是不可能的。生產(chǎn)過程的高度整合,使一兩個人控制整個工廠不光滿足削減人工的需要,也 對減少通訊環(huán)節(jié)、綜合掌控全局有利。所以,計算機(jī)顯示屏就不光是酷,而是必須的了。另外,計算機(jī)控制使現(xiàn)場儀表(閥門、測量變送器等)的自檢成為可能,大 大提高了系統(tǒng)的可靠性。于是,計算機(jī)控制就是不花沒人性了。' W9 r( n. v! K+ |0 ]& E2 m
  Y- R! \, d1 C0 m& C- o
計算機(jī)控制從一開始的集中控制(用IBM的大型機(jī))到現(xiàn)在的分散控制(所謂DistributedControlSystem,DCS) 走過一個螺旋形上升的過程。集中控制的要害在于風(fēng)險集中,要是大型機(jī)掛了,全廠都要失控。分散控制將全廠劃分為若干條條塊塊,用以微處理器為基礎(chǔ)的一個控 制用局部網(wǎng)來分散控制,主要子系統(tǒng)都是實時冗余的,故障時在第一時間內(nèi)切換到備用系統(tǒng),主系統(tǒng)和備用系統(tǒng)在平時定期互相自檢、切換,以保證可靠。分散控制 顯然大大提高由于計算機(jī)本身引起的可靠性。但是現(xiàn)場儀表和接線終端(fieldterminalassembly,F(xiàn)TA)不是冗余的,整個可靠性鏈還是有漏洞。另外,控制局部網(wǎng)的同軸電纜長度有物理限制,F(xiàn)TA到DCS的長度也有物理限制,所以最后分散控制還是不怎么分散,全是集中在中控室附近或地下室里。不過DCS在地理上的集中,并不妨礙其在邏輯上的分散,只要不是一把火把DCS的機(jī)房燒掉,部件可靠性的問題還是可以很好地隔離在小范圍。- G8 e0 |8 L* Q5 C

. M9 m9 {% j. m  c$ V( g既然DCS是一個局部網(wǎng),那就有一個通信協(xié)議的問題。DCS基本上用兩大類型的通信協(xié)議:輪詢(polling, 中文的準(zhǔn)確譯名是什么?)和中斷。輪詢由中心控制單元輪流查詢所有子系統(tǒng),不管有沒有數(shù)據(jù)更新,到時候就來問一遍,所以不管什么時候,系統(tǒng)地通信流量都很 高,但是恒定。中斷方式正好相反,子系統(tǒng)自己先檢查一下,如果數(shù)據(jù)沒有變化,就不上網(wǎng)更新;直到數(shù)據(jù)有變化,再上網(wǎng)“打一個招呼”。這個方式的平時通信流 量較低,所以網(wǎng)路帶寬要求較低。但是生產(chǎn)過程發(fā)生異常時,大量警報數(shù)據(jù)蜂擁而來,如果帶寬不夠,就會發(fā)生通信阻塞的問題。所以,中斷和輪詢到最后對帶寬的 要求是一樣的,因為誰也不能承擔(dān)生產(chǎn)過程異常時通信阻塞的后果。* D4 W/ c- w) j7 w

) h* J' _$ Y. g% k. x# m* Q- m二十年前,Honeywell是第一個吃DCS這個螃蟹的公司,今天Honeywell仍然是行業(yè)里的老大,盡管其設(shè)備昂貴,被戲稱為Moneywell。當(dāng)年的DCS全是量身度造的硬件、軟件。今天在“開放系統(tǒng)”(openarchitecture)的大潮里,DCS的制造廠家都紛紛將控制臺和計算、網(wǎng)絡(luò)控制單元轉(zhuǎn)向通用的WINTEL或UNIX平臺,自己專注于工控專用裝置(如基本控制裝置,包括I/O)和系統(tǒng)的軟件整合。但是這帶來了新的問題。通用/商用硬件、軟件的可靠性常常不能滿足24小時、365天的連續(xù)運(yùn)轉(zhuǎn)要求。對于大多數(shù)IT來說,機(jī)子壞了,兩小時內(nèi)換上就是很快的了。系統(tǒng)需要維護(hù),弄一個周末或者晚上停機(jī)維修就是了。但是對于生產(chǎn)過程來說,這是不可容忍的,不惜365天一天24小時可靠運(yùn)轉(zhuǎn),很多乙烯廠、煉油廠要4、5年才有一次停車大修。開放結(jié)構(gòu)容許將DCS和經(jīng)營、管理、辦公網(wǎng)絡(luò)相連接,極大地提高了信息交流速度和深度、廣度,但也帶來了網(wǎng)絡(luò)安全問題,緊接著就是DCS前面豎起一道又一道的防火墻,把數(shù)據(jù)分享和遠(yuǎn)程操控壓縮到最低。另外就是WINTEL夜以繼日的不斷更新?lián)Q代,使硬件、軟件的穩(wěn)定性十分糟糕,沒有過多少時間,又要升級,又是頭疼。這是DCS的第二個螺旋形上升,只是現(xiàn)在還是盤旋多于上升。5 ]  {  c, A1 s+ {2 G' h

. G( A- I" O0 Y& B3 m1 V計算機(jī)控制的領(lǐng)地也在擴(kuò)大,類似USB那樣的技術(shù)也開始用于數(shù)字化的儀表。過去的儀表都必須把信號線拉到接線板(marshallingpanel)上,然后再連到FTA上,這樣同樣遠(yuǎn)在百把米外的10臺儀表,需要并行拉10條線,很浪費(fèi)。用了類似USB的現(xiàn)場總線(fieldbus),各個儀表可以“掛”在總線上,然后一根總線連到DCS就可以了,大大節(jié)約拉線費(fèi)用和時間,對系統(tǒng)(如加一個測量用的變送器或控制閥)的擴(kuò)展也極為方便?,F(xiàn)場總線也有現(xiàn)場總線的問題,不過這里就不多扯了。. ^; R8 ^2 p$ W* ^/ Z
4 |% B6 ^( x6 W% \. ]
控制軟件2 b4 |1 [/ b: y) W6 ^% g9 ~% O( S3 N

; [5 i' L3 N+ {DCS的最大優(yōu)越性是可編程。這不是簡單的像PLC(programmablelogiccontroller,可編程序邏輯控制器,多用于機(jī)電控制)的梯級邏輯那樣編程,而是可以像C、FORTRAN那樣“正規(guī)”的編程。我沒有在IT干過,只能和學(xué)校里計算機(jī)語言課程和大作業(yè)的程序相比。DCS編程和平常的編程相比,還是有一些特點(diǎn)的。首先,DCS的程序?qū)儆凇霸偃搿笔剑簿褪嵌〞r反復(fù)運(yùn)行的,而不是一次從頭到底運(yùn)行就完事的。所以DCS程序可以在運(yùn)行完畢時在內(nèi)存里存放數(shù)據(jù),到下次運(yùn)行時再調(diào)用,形成所謂“遞歸”運(yùn)算。這既是優(yōu)點(diǎn),也是缺點(diǎn),要是別人在你兩次運(yùn)算中間把那個中間數(shù)據(jù)更改了,你就慘了,找債主都不容易。( T1 ^  {; @0 ?8 n, t3 p
% J7 S0 X2 i5 U2 A
DCS程序的特色是實時,所以其 執(zhí)行非常取決于一系列事件在時間上的順序。時序上要是搞岔了,老母雞也就變鴨了。問題是,分散控制要求越分散越好,不光是可靠性,在系統(tǒng)資源的調(diào)度上,分 散了也容易使系統(tǒng)的計算負(fù)荷均勻。這樣一來,一個應(yīng)用程序包常常將一個巨大的程序打散成很多小程序,各自的時序和銜接就要非常小心。
* W2 v% |& e* m  }/ R
. Z) J' m. K- J4 G( P: {/ Y* J和學(xué)術(shù)型控制計算程序最大的不同,或許還在于 對異常情況的處理。一個多變量控制問題在實際上常常會有部分變量處于手動控制,而其余變量處于自動控制的情況。這在理論上是一個麻煩,在實際上是一個噩 夢。不光要考慮所有的排列、組合,還要考慮所有情況平順的切入、切出,不同模式之間的切換。還有就是要考慮異常情況下如何安全、自動地退出自動控制,交還 手動控制。有時操作規(guī)程上的一句話,程序?qū)憣懢褪且豁?。如果操作?guī)程上來一句“視情處理”,那就更慘了。在所有控制程序中,控制計算通常不超過30%,20%為人機(jī)接口功能,而50%為異常情況處理。: i: Y* C, n, ?6 ~4 p
( g7 n# f, ]; P* J2 p
人機(jī)界面5 W4 a3 D8 ~4 _' n$ L! L( ^# q1 B

! m. h; B1 l- z% [! E  w計算機(jī)控制不是因為更先進(jìn)、更有效的人機(jī)界面才開始的。從一開始,人機(jī)界面就面臨一個管中窺豹的問題。計算機(jī)的CRT顯 屏只有這么大,不可能“一言以蔽之”,在一瞥之中把所有的過程信息盡收眼底。計算機(jī)可以不斷地?fù)Q屏,分段顯示其他裝置、工段的信息,但是把所有的工段、裝 置分別用各自的畫幅表示,如果沒有有效的組織,找都不容易找到,就像在同一個目錄里雜亂無章地放上百把個文件一樣。分級的菜單是傳統(tǒng)的解決辦法,但是要逐 級上去再逐級下來,很費(fèi)時間,情急之中,往往來不及更換。大鍵盤上shortcut鍵可以“一鍵調(diào) 出”,但需要死記硬背,這可不是幾個、十幾個畫幅,而是上百個甚至更多。很長時間以來,如何有效地在畫幅之間導(dǎo)航,可以在最短時間和最少點(diǎn)擊內(nèi),不需要死 記硬背,就可以直觀地找到所需要的畫幅,一直是一個令人頭疼的問題。其實,這個問題在網(wǎng)頁設(shè)計里也碰到,一個內(nèi)容豐富的網(wǎng)站,要如何組織網(wǎng)頁,使用戶自 然、迅速地找到自己需要的內(nèi)容,很不容易。所不同的是,工控的“網(wǎng)頁”需要保證在最短時間里找到,需要的時候找不到是要出大問題的。
; R8 \- ~- A/ S. E! m ! f6 G+ C0 n( E, Y
人機(jī)界面設(shè)計的另一個問題是色彩。還記得DOS2.0時代的WordStar嗎?那是黑底綠字的。那時候,CRT亮度不足,壽命也糟糕,黑底可以延長壽命,綠字可以增加反差,幫助閱讀,反正機(jī)房是暗暗的,黑底并不傷眼睛。到了WordPerfect5.0的時候,就是藍(lán)底白字了,字和背景之間的反差大大減小,藍(lán)底也比較適宜于在明亮的房間內(nèi)使用。到了Word的時代,沒有昏暗的機(jī)房了,基本上都用像紙上寫字一樣的白底黑字了,再用黑底綠字,太傷眼睛。
9 J/ _2 W# G* I2 q; H
2 ]' m: U' V0 L" Z  t/ X0 u中控室計算機(jī)顯示也經(jīng)歷了類似的旅程。早期DCS的顯示都是黑底綠字的,到了用WINTEL或UNIX的 時代,很多人出于習(xí)慣,仍然采用黑底綠字,但是現(xiàn)代人機(jī)工程研究表明,淺色背景大大減低眼睛的疲勞,在明亮室內(nèi)的燈光對屏幕的反光也小,所以控制室的顯示 開始向淺灰背景進(jìn)化了。人機(jī)工程研究同時發(fā)現(xiàn),色彩可以作為過程信息的一部分,天下太平的時候,應(yīng)該用最不顯眼的灰色,所有的圖形、數(shù)據(jù)都用不同深淺的灰 色來表示,只有在過程參數(shù)越限或報警時,才采用彩色顯示,這樣可以一下子就把操作工的注意力吸引到需要的地方。但是,出于習(xí)慣思維,很多地方還是大量采用 各種色彩表示不同的設(shè)備狀態(tài)和參數(shù),即使是正常狀態(tài)也是一樣。這樣在平日里色彩繽紛很好看,但在異常情況時,不容易在萬馬軍中找到上將的首級,實際上是舍 本逐末。
9 Y1 k$ f- v( L$ s0 } & U/ U0 x9 }/ t* K0 I
顯示器的布置也很有講究,少了當(dāng)然不行,也不是越多越好,一個操作工的視界的上下左右有一定的范圍,控制臺的色彩、構(gòu)造、照明都不能想當(dāng)然的。這不是助長修正主義,而是保持操作工最有效地控制生產(chǎn)過程的要求。, u0 ^7 s0 x" ^6 K, f* Z
! S# _( w6 O. p- e
性能評估
9 n, P+ p1 c) f" s4 K5 l! q" ` 2 b0 a9 ^4 \: |. n' L4 u' b
傳統(tǒng)上,如果操作工不抱怨,控制回路的性能就 是可以接受的,除非你想精益求精,一般不會去沒事找事,重新整定參數(shù)。在對經(jīng)濟(jì)效益斤斤計較的今天,生產(chǎn)過程的工藝條件被推到極端,對控制性能提出極大的 挑戰(zhàn),控制回路必需時時、處處都在最優(yōu)狀態(tài)。隨著控制回路數(shù)的迅速增長,單靠人工觀察,已經(jīng)難于隨時掌握所有控制回路的性能狀況了??刂苹芈沸阅茉u估技術(shù) 應(yīng)運(yùn)而生。
  n4 [3 b) L9 Z( ^% N# u+ { & v6 X2 r6 I" g9 L  d8 z  w' S
理論上,對一個過程可以設(shè)計一個最優(yōu)控制,其中一種就叫最小方差控制。這其實是線性二次型最優(yōu)控制的一種,控制作用比較猛,但是這是理論上的極限,控制方差不可能再小了。90年代時,理論界提出一個方法,可以用閉環(huán)辨識的方法,不辨識模型,而是直接確定理論上的最小方差,然后將實際方差和理論上的最小方差相比,判別控制回路是否需要重新整定。這個方法開創(chuàng)了控制回路性能評估的先河,但是在實用上不容易排除不利影響,應(yīng)用不多。- G6 |0 q( N- y/ \: x5 N2 E9 e4 R* K

; S  T6 d8 s5 Z1 O然而,不和理論上的最優(yōu)值比較,而是和實際上的理想值比較,就可以繞過很多麻煩的理論問題。比如說,流量回路應(yīng)該在1分鐘內(nèi)安定下來,那理想值就是1分 鐘。通過快速富利葉變換和頻域分析,可以將理論性能和實際性能相比較,迅速確定回路的當(dāng)前性能狀況。最要緊的是,這可以用計算機(jī)自動采集數(shù)據(jù),自動計算, 每天早上(或隨便什么時候)給出報表,控制工程師可以一目了然,哪些回路需要重新整定,哪些沒有問題,可以有的放矢。實時頻域分析還可以將所有以相近頻率 振蕩的回路羅列出來,接下來控制工程師就可以按圖索驥,找出害群之馬了。0 _# G4 F2 g; ^7 W

% a  l& K! D9 t/ ]7 z/ |% d控制回路性能評估的下一步當(dāng)然就是自動整定。這實際上是一個簡化的、斷續(xù)運(yùn)行的自校正PID控制器,在理論上已經(jīng)沒有問題,但實用上還有很多可靠性問題沒有完全解決,現(xiàn)在產(chǎn)品不少,但實用的還是不多。2 p7 O0 A2 O8 w5 p) |
& X) l& M, r4 J# o: o6 ]7 |5 X
故障診斷和容錯系統(tǒng)5 e  B* Q% s- r# i+ X0 V" C2 Y

  \; }/ J, C* w7 e" o) `% R; d1 o對控制回路性能評估的更進(jìn)一步,當(dāng)然就是對生產(chǎn)過程的故障診斷了。故障就是異常情況,異常就是和正常不一樣。所以故障診斷的核心在于如何探測這“不一樣”。* ?' C5 l# w- r8 Z3 A1 z% t
$ f6 T9 p$ n2 S+ l' f+ n
故障總是有蛛絲馬跡的,問題在于工業(yè)過程的數(shù)據(jù)量太大,在大海里撈針,等撈到的時候,常常已經(jīng)時過境遷了。在數(shù)據(jù)分析中,PLS(其實是PeojectiontoLatentStructure,而不是一般所認(rèn)為的PartialLeastSquare)和主元分析(PrincipalComponentAnalysis,PCA)是很流行的方法。PLS和PCA將眾多相關(guān)的變量歸攏到少數(shù)幾個“合成”的變量,這樣一個有大量變量的復(fù)雜大系統(tǒng)就可以簡化為一個小系統(tǒng),就從大海撈針變?yōu)橥肜飺漆樍?。撈出來的針不再是單個的變量,而是變量的組合。這和實際是相符的,故障的早期征兆常常是若干變量的組合,而不能單從一兩個變量上看出來。8 E. o! ]+ T( C4 y* x

3 O$ q% P1 \1 `) z- fPLS和PCA還可以和圖形方法結(jié)合起來使用。比如說,將那些合成變量標(biāo)稱化,就是除以正常值,那所有合成變量的標(biāo)稱值就是1。把所有變量畫成“蜘蛛圖”(spiderchart),每一個蜘蛛腳代表一個合成變量,由于合成變量的標(biāo)稱值都是1,蜘蛛圖就是大體為圓的。如果哪一個腳出現(xiàn)變化,蜘蛛就不圓了,非常容易看出異常來,接下來就可以有的放矢地尋找故障的早期跡象了。" A1 y$ Q: w' m% B0 a- a* @
9 N- \( G: @& _  a4 ]. J, P9 T6 R
圖形數(shù)據(jù)分析的另一個路子是所謂co-linear分析。這是IBM早 年琢磨出來的一個東西,理論上簡直沒有東西,但要求換一個思路,正所謂退一步海闊天空。平常的數(shù)據(jù)點(diǎn),三維以上就沒法畫了。但是如果把三維空間的所有數(shù)軸 畫成平行線,而不是常見的直角坐標(biāo),那三維空間里的一個點(diǎn),就是連接三根平行線的一根折線。如果僅此而已,那也就是一個簡單但愚蠢的數(shù)學(xué)游戲。平行坐標(biāo)系 的妙處在于,平行線可以盡著畫,所以5維、20維、3千 維,只要紙足夠大,都可以畫,而且可以看見,而不是只能想像。平行坐標(biāo)只有一個缺點(diǎn),就是只能表述離散的點(diǎn),而難以表述連續(xù)的線或面,但這對計算機(jī)采集的 數(shù)據(jù)來說,不是問題,計算機(jī)采集的數(shù)據(jù)本來就是離散的點(diǎn)。這樣,用平行坐標(biāo)把大量的數(shù)據(jù)點(diǎn)畫成折線簇,可以很直觀地看出數(shù)據(jù)中的模式來,  ~2 ]2 E9 n& v+ W5 w
1 j; K3 S, T% M: i. U3 i: T. D
故障診斷的另一個思路是對整個過程進(jìn)行辨識。辨識出來的模型表述系統(tǒng)的行為,故障當(dāng)然就是行為的改變,所以將實時辨識出來的模型和正常模型相比較,就可以判斷系統(tǒng)是否出現(xiàn)異常或故障。
& T! V- O: n3 Y/ k8 E   s( w  }4 n* Y
仿真
2 E4 ~) D- d, J  d% N 6 C' s1 e* U1 v" a" F
計算機(jī)和模型的另一個用處就是仿真。仿真(simulation)也叫模擬,但是模擬容易和模擬電路(analogcircuit)搞混,所以現(xiàn)在叫仿真多了。只要對實際過程有一個足夠精確的模型,計算機(jī)是可以相當(dāng)精確地模仿實際系統(tǒng)的行為的。
% h0 o6 G4 _8 |" v - g* {; s" }3 a" _
仿真有靜態(tài)仿真和動態(tài)仿真。靜態(tài)仿真基本上就 是解一個巨大的非線性聯(lián)立方程組,描述空間分布的微分方程也被有限元方法分解了?,F(xiàn)代靜態(tài)仿真已經(jīng)可以做得相當(dāng)精確,但這也是在多年結(jié)合實際過程數(shù)據(jù)“磨 合”模型的基礎(chǔ)上才能做到的。靜態(tài)仿真大量用于工藝設(shè)備設(shè)計計算,但是對研究實際過程的真實行為的作用有限,因為對整個生產(chǎn)過程和工藝的仿真要考慮進(jìn)各個 設(shè)備動作的時間和控制回路的影響,這些靜態(tài)仿真是無法體現(xiàn)的。動態(tài)仿真要解同樣巨大的聯(lián)立微分方程組,由于要達(dá)到實時或更快,一般只能大大簡化,否則計算 速度跟不上,收斂性也難以保證。希望有朝一日,動態(tài)仿真可以達(dá)到靜態(tài)仿真同等的精度,而不必?fù)?dān)心損失計算速度。1 K) S+ L6 b; {% D
) l1 F4 ~2 @' E/ J: V
仿真在工業(yè)上十分有用?,F(xiàn)代化工廠越來越穩(wěn) 定,越來越安全,很多操作工一輩子也沒有遇到過真正危險的情況。但沒有遇到過不等于不會遇到,操作工必須接受足夠的訓(xùn)練,只有這樣,才能當(dāng)遇到危險情況 時,首先能及時、正確地識別故障,然后才能及時、正確地作出反應(yīng)。這就要靠仿真訓(xùn)練了?,F(xiàn)代化工廠也在不斷地拓展工藝參數(shù)的極限,經(jīng)常需要做各種各樣的試 驗。有了仿真,就可以預(yù)先驗證試驗的構(gòu)思,和驗證對緊急情況的處理。( p% }- g7 ?3 s$ N6 ~) u" \
" o) M& U* j3 M' w: @9 Z. j3 K
仿真更是控制工程師的好幫手,新的控制回路先放到仿真上試一下,得出初始整定參數(shù),驗證異常情況的處理能力,然后再放到真家伙上,可以避免很多不必要的驚訝。( N/ b' K5 z8 k( `
- u' O: |9 n7 `3 ]
RTO
' v: Y" J9 n& M; W
; s2 }$ I+ s7 _8 D, o仿真的一個遠(yuǎn)親是實時最優(yōu)化。對于斤斤計較的 現(xiàn)代制造業(yè),實時最優(yōu)化當(dāng)然是求之不得的。實時最優(yōu)化就是把整個生產(chǎn)過程當(dāng)一個大的實時仿真來運(yùn)算,實時(實際上是每小時)計算出最優(yōu)工況。想法是好的, 困難是多的。首先,那么大一個方程組收斂不容易,要劃成很多條條塊塊,分別求解,然后拼起來。問題就出在“拼”上,邊界條件碰不攏怎么辦?模型總是有相當(dāng) 的簡化,其中有些參數(shù)必須和實際測量值符合,有些就沒有實際測量值對應(yīng),就是“經(jīng)驗系數(shù)”(fudgefactor)了。這些經(jīng)驗系數(shù)就是承擔(dān)收拾爛賬的,邊界碰不攏,就調(diào)整經(jīng)驗系數(shù),使他們對齊。問題是,好多時候,這一招也不靈,所以實時最優(yōu)化的喇叭吹得很響,真正用起來的很少,花了大錢最后放棄的也不在少數(shù)。
7 {2 g4 H" C+ L : V# T' R% W4 e! s% ~9 G" W
人的因素
% Z, c1 {8 q0 T/ n5 l: F 1 I5 @) f/ [6 r. i7 }
和打仗一樣,贏得戰(zhàn)斗的是武士,不是武器。控制工程師是控制回路成功與否的關(guān)鍵,而不是價值千金的計算機(jī),或者“放之四海而皆準(zhǔn)”的數(shù)學(xué)控制理論。( O( J3 W! c: Z1 ]
- i' G5 Q$ j& f$ X% l1 x
在加拿大,化工系的控制“專業(yè)”要選滿所有化 工學(xué)分,然后再加選控制學(xué)分,所以要求比一般的化學(xué)工程師還要高一點(diǎn)。選滿化工學(xué)分是很重要的一點(diǎn),如果沒有對化工的話語權(quán),那化工控制也別混了,這一點(diǎn) 是國內(nèi)(至少是三十多前我讀大學(xué)的時候)所欠缺的。這就像醫(yī)生一樣,只有對生理、病理有深刻的了解,對病人的具體情況有深刻的了解,才有可能可靠地判斷病 情,才能可靠地開方治病。只會看單抓藥,這就不是醫(yī)生,而是藥劑師了。在實際中,控制工程師對工藝過程的動態(tài)行為的理解至少應(yīng)該和工藝工程師同等,和操作 工相當(dāng)。事實上,很多時候,控制工程師的使命就是將工藝工程師和操作工的經(jīng)驗和知識具體化、自動化,如果你不能深刻理解,那如何實現(xiàn)呢?一個優(yōu)秀的控制工 程師可以在操作工不在的時候,頂班操作;可以在工藝工程師不在的時候,做出工藝決定。& W1 G9 ^- b4 Y# R+ `( `# W

2 @: b- E( X: H) `但是控制工程師畢竟不是工藝工程師,也不是操 作工??刂乒こ處煈?yīng)該掌握前面說到的所有領(lǐng)域,從數(shù)學(xué)控制理論,到計算機(jī)網(wǎng)絡(luò),到人機(jī)工程,到工藝和儀表知識。這個要求很高,但不是不切實際的。這些是攪 這個瓷器活所必需的金剛鉆。這也是為什么現(xiàn)在加拿大工業(yè)界熱衷于招雇具有碩士學(xué)位的控制畢業(yè)生,因為本科的幾年已經(jīng)很難學(xué)習(xí)必須的知識了。至于博士,那還 是有眼高手低的嫌疑,不過也開始改觀了。( q( O/ f) u, c- m# u

: S$ p4 T6 r1 \' D' ^1 [" K專業(yè)知識只是成功的一面,控制工程師必須善于 與人打交道。工藝工程師比較好說,畢竟有類似的背景,但操作工是控制系統(tǒng)成敗的關(guān)鍵,如果無法取得操作工對你個人和你的控制系統(tǒng)的信任和合作,那控制系統(tǒng) 很可能就是永久性地被關(guān)閉,操作工寧愿手工控制,出了問題還是因為控制系統(tǒng)不可靠,你就等著里外不是人吧。但是取得操作工的信任和合作后,事情會向相反的 方向發(fā)展。操作工會主動向你提出改進(jìn)建議,或新的想法,主動找機(jī)會幫你試驗新的功能,主動拓展控制系統(tǒng)的性能極限。如果說顧客是上帝的話,操作工而不是部 門主管才是控制工程師的上帝。
8 D* y: w, t" c4 {$ S: L) }6 F
5 E0 J' G7 t- c; j8 C! u控制工程師也要善于和頭兒打交道,畢竟搞項目、要錢的時候,還是要找頭兒的。打報告、作報告、項目控制和管理、和供應(yīng)商打交道,這些都是必備的技能。
$ N  Q) F# v. y, g) H8 ?6 }   r7 Q5 Q" X+ n# p9 `2 I
工藝工程師也是工程師,但用軍隊的比方來說,他們?nèi)硕鄤荼?,更像常?guī)部隊,習(xí)慣大兵團(tuán)協(xié)同作戰(zhàn)??刂乒こ處焺t像特種部隊,人數(shù)少,行止怪癖(至少對工藝的人來說,他們永遠(yuǎn)弄不明白控制的人到底在做什么,怎么做出來的),從規(guī)劃到實施到維修,全一手包辦。' X( p: G, I' A! _

, _' F: n' h. K2 ?/ @' B0 s控制理論的發(fā)展歷程就是一個尋找“放之四海而 皆準(zhǔn)”的“神奇子彈”的歷程,終極目標(biāo)是可以用一個統(tǒng)一的數(shù)學(xué)控制工具去“套”任何一個具體的控制問題,而不必對具體過程的物理、化學(xué)等特性有深入的理 解??刂评碚摰拿恳淮沃卮筮M(jìn)展,都給人們帶來希望,“這一次終于找到了”。但每一次希望都帶來了新的失望,新方法、新工具解決了老問題,但帶來了新的局 限,有的時候甚至轉(zhuǎn)了一圈兜回去了。新的局限往往比老問題更棘手,需要對過程的理解是更多而不是更少。矛和盾就是這么著在螺旋形上升中斗法。* x: A8 j- {4 I  r% X. A  @
1 w* i4 a+ H' p& y0 p& L- ?4 H
但是現(xiàn)實常常和人們的認(rèn)識背道而馳。在商業(yè)化 的大潮中,推銷先進(jìn)控制算法的公司拍胸脯擔(dān)??梢匀绾稳绾斡谩叭f能”的數(shù)學(xué)控制工具解決一切控制問題,那些絢爛的老虎皮也確實照得不明就里的人眼花繚亂, 心旌飄蕩;公司的頭兒也一口吃進(jìn),畢竟“技術(shù)萬能論”不僅在美軍中盛行,在北美的公司文化中也是大行其道。直到有一天,人們發(fā)現(xiàn)永動機(jī)依然是神話,人還是 不能在水上步行,方才想起來,原來世上是沒有這等好事的。不過這是題外話了。
, h2 K6 Y9 t- P# I2 I* b' ^ 2 ?) ^. j0 z! t$ |2 k
本來就知道這個系列會又臭又長,但是既然寫了,就寫完吧,希望沒有占用太多的帶寬,希望沒有浪費(fèi)大家的時間,希望給對自動控制有興趣的朋友提供一點(diǎn)入門的知識,希望給同好提供一些從實際中得到的經(jīng)驗,錯誤的地方肯定很多,敬請原諒,同時謝謝閱讀。
16#
發(fā)表于 2015-10-14 17:19:39 | 只看該作者
我呢
17#
發(fā)表于 2015-10-14 18:54:37 | 只看該作者
這文章寫的確實好。
18#
發(fā)表于 2015-10-14 20:21:24 | 只看該作者
好文9 z- u) W6 L( `( k
19#
發(fā)表于 2015-10-14 20:32:33 | 只看該作者
收藏
20#
發(fā)表于 2015-10-14 20:36:44 | 只看該作者
通俗易懂啊,復(fù)雜問題簡單化
您需要登錄后才可以回帖 登錄 | 注冊會員

本版積分規(guī)則

Archiver|手機(jī)版|小黑屋|機(jī)械社區(qū) ( 京ICP備10217105號-1,京ICP證050210號,浙公網(wǎng)安備33038202004372號 )

GMT+8, 2025-7-19 22:55 , Processed in 0.070473 second(s), 12 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回復(fù) 返回頂部 返回列表