|
目的:設(shè)計一個平面凸輪的外輪廓+ O8 D w5 N5 q
如下圖,從動件為滾針軸承,帶導(dǎo)軌,需要確定基圓直徑,和升程曲線。 W; U/ c4 C, p/ l
(參考書籍:凸輪算法,80年代的國產(chǎn)貨,我也不知道書名;另一本,英文:cam design handbook)) ~. D# o: V/ q5 D, o7 h! X W
5 @2 e7 a! D: [2 L% @- Y+ e* ?
7 ^5 @8 @. P2 d, ~4 @! |9 `& D6 S凸輪升程曲線要求運動盡可能平滑,就是加速度平滑,這樣電機(jī)壽命長,當(dāng)前比較好的是7段組合式加速度曲線(參考書1),如圖,我們知道總升程h,總角度,需要通過計算得出每一段的加速度,速度,和行程(升程)的表達(dá)式,進(jìn)而計算并繪制凸輪外輪廓。8 `* ]1 r7 y5 [% |2 n8 R' i
5 \4 U( b6 h1 l0 M1 l6 w公式如下
q/ E& D. {% d+ s# P
2 ~3 J7 l. }" E3 O$ L4 M因為是舉升,重力向下,我們希望加速段比較長,減速段比較短,就是加速段的角度比減速段的多
- v p S2 A& | k* v2 M( o& }2 ^0 r6 }$ j. s9 }
于是我們需要一個程序,輸入角度和升程,以及加減速段的比值,輸出每個角度對應(yīng)的升程數(shù)值;5 O8 P3 V% e& K2 c" T k1 ^1 n
部分程序如下(MATLAB):
8 l7 V& |* m1 r; U$ _/ M1 qrb=45;rt=31;e=0;h=85;2 g, h5 j9 y8 B6 e& j; Y
% 推程運動角;遠(yuǎn)休止角;回程運動角;近休止角;推程許用壓力角;凸輪轉(zhuǎn)速- m* V! l$ K+ H0 c+ B8 x
ft=155;fs=20;fh=155;fx=30;alpha_p=35;n=60;
, J' P( |; _. r! W( s( f% Z" G- Y/ p% 角度和弧度轉(zhuǎn)換系數(shù);機(jī)構(gòu)尺度
, W6 d7 K/ O. e- a9 Lhd=pi/180;du=180/pi;se=sqrt(rb^2-e^2);
; R: t/ a; J- yw=n*2*pi/60; omega=w*du; % 凸輪角速度(°/s)+ B/ F% [; R; Y
p=3; % 加速段角度和減速段角度比值+ O* ]! v, W" n4 [$ l$ o
for f=1:ft' |2 M7 _1 f- C7 h
if (0<=f&&f<=1/4*p/(1+p)*ft)
4 X9 [0 A: ^6 U- b6 z6 `. z %s(f)=0.09724613*h*(4*f/ft-1/pi*sin(4*pi*f/ft));sxs=s(f); ; r8 |, ?* T6 `1 T6 S
s(f)=2*p/(1+p)*h/(2+pi)*(2*f/(2*p/(1+p)*ft)-1/2/pi*sin(4*pi*f/(2*p/(1+p)*ft)));sxs=s(f); ' V9 H, ?0 D$ g4 q8 g
ds(f)=0.3889845*(2*p/(1+p)*h)/(2*p/(1+p)*ft)*(1-cos(4*pi*f/(2*p/(1+p)*ft)));sxds=ds(f);' \: {9 D0 u! u1 |& I1 E) ]( p
d2s(f)=4.888124*(2*p/(1+p)*h)/(2*p/(1+p)*ft)^2*sin(4*pi*f/(2*p/(1+p)*ft));sxd2s=d2s(f);
; T- X4 p) n6 ]9 F' Y* ? end, s" b' ^8 @# |; P2 k$ G
if (1/4*p/(1+p)*ft<f&&f<=3/4*p/(1+p)*ft)# K8 \1 ^( ~* j
%s(f)=(p/(1+p)*h)*(2.444016188*(f/ft)^2-0.22203094*f/ft+0.00723406);sxs=s(f);% N% e! O' ]2 L" v% }- S6 B+ y4 F) Q
s(f)=(2*p/(1+p)*h)/(2+pi)*(1/4-1/2/pi+2/(2*p/(1+p)*ft)*(f-(2*p/(1+p)*ft)/8)+4*pi/(2*p/(1+p)*ft)^2*(f-(2*p/(1+p)*ft)/8)^2);sxs=s(f);
& K L! P( ^- Z) S6 f ds(f)=(2*p/(1+p)*h)/(2*p/(1+p)*ft)*(4.888124*f/(2*p/(1+p)*ft)-0.222031);sxds=ds(f);) c0 m f p( X( |5 O+ b
d2s(f)=4.888124*(2*p/(1+p)*h)/(2*p/(1+p)*ft)^2;sxd2s=d2s(f);
6 l4 I4 X: J/ e9 @; y8 e' X end
6 i5 e* P' J' k9 O0 o7 g, o1 O* T. x if (3/4*p/(1+p)*ft<f&&f<=4/4*p/(1+p)*ft)
+ h: k8 Y8 R3 G& v %s(f)=(p/(1+p)*h)*(1.6110155*f/ft-0.0309544*sin(4*pi*f/ft)-0.3055077);sxs=s(f);% E% X; X2 x' k* [/ c4 S- _
s(f)=(2*p/(1+p)*h)/(2+pi)*(-pi/2+2*(1+pi)*f/(2*p/(1+p)*ft)+1/2/pi*sin(4*pi*f/(2*p/(1+p)*ft)));sxs=s(f);# @: D$ S0 M( o* I3 A9 ^7 ]3 b
ds(f)=(2*p/(1+p)*h)/(2*p/(1+p)*ft)*(1.6110155+0.3889845*cos(4*pi*f/(2*p/(1+p)*ft)));sxds=ds(f);
. C2 _0 M) ?# e( a$ h1 k7 ^ d2s(f)=-4.888124*(2*p/(1+p)*h)/(2*p/(1+p)*ft)^2*sin(4*pi*f/(2*p/(1+p)*ft));sxd2s=d2s(f); , Q: D. C4 \5 h5 p2 Y/ l/ P- S
end
' @' p+ y/ J$ |* i, v% ^上面的程序最終會計算出,在1-155度中,每一度變化對應(yīng)的升程數(shù)值s;速度ds;加速度d2s。
: Z3 {) i: T2 T1 I! o' U1 g2 ^最終效果(把計算的點給autocad畫圖)我不用擔(dān)心睡不著覺了。
L6 E) }" E: u3 T9 k# o8 x7 D4 w9 e
& \, G8 f" t4 q3 Q9 L4 U5 q' \" q" _+ q
有興趣的可以一起聊這個曲線。9 E1 o; S8 j, V' Q+ N/ k
附書1的部分目錄,可以幫助找到同一本書$ ?4 L/ _$ b! D7 w
* c8 x: w% O4 X, l1 Q: U6 ]) H7 m' t
& f$ [4 U7 F- X3 D! ~* E1 {6 R/ |' s3 c) X
* u! G& I, J1 ]( B4 C
# t* b. u/ R( g4 E' i
|
本帖子中包含更多資源
您需要 登錄 才可以下載或查看,沒有賬號?注冊會員
×
|