人妻暴雨中被强制侵犯在线,亚洲国产欧美日韩精品一区二区三区,四虎影免看黄,国产无人区二卡三卡四卡不见星空

 找回密碼
 注冊會員

QQ登錄

只需一步,快速開始

搜索
查看: 1277|回復: 0

英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》

[復制鏈接]
1#
發(fā)表于 2015-1-9 22:34:06 | 只看該作者 |倒序瀏覽 |閱讀模式
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 ) d+ a7 `" L5 V( G* {  H

2 {& q' G" o0 w( h0 p; z Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar (4.42 MB, 下載次數(shù): 6) ! L* O3 j+ `1 m* O

. A. D) D0 k1 f( u! ]. a. q Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar (3.39 MB, 下載次數(shù): 6)
+ E( N. I. x7 G' v# t8 h& N, {, g9 z& z, ^: X
目錄, P' v% R% i/ L3 r6 V- o

( i, e  G: U9 }. J2 i% Q3 LContents% Z7 ^1 y* |5 n/ x  e0 U
% [8 p+ O; M) y8 Q2 h4 ?
Preface page xvii# V8 _/ ]$ O3 ^1 k; _) ?
1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0 C; U; U( w( m9 V  @# N3 N( n1.1 Viscoelastic Phenomena 1" Z5 \0 I5 {& |. c! O  R0 T
1.2 Motivations for Studying Viscoelasticity 3
# {+ x$ m; ^3 `* J# }% B0 S1.3 Transient Properties: Creep and Relaxation 3+ |6 B- h; [% i5 {  f
1.3.1 Viscoelastic Functions J (t), E(t) 3
, h' w7 E3 f- l6 A" z1.3.2 Solids and Liquids 7
5 a# H% u! T& M; ~: K: r; @1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 8+ n% W& E. _- n0 i0 `* o, X
1.5 Demonstration of Viscoelastic Behavior 103 {, J& V6 y5 q2 ~. z
1.6 Historical Aspects 10& x2 k0 ^" c) ?' h
1.7 Summary 113 K# `3 Q( V% a7 M+ G$ W
1.8 Examples 11
; q5 t5 v5 i! a. ?4 S7 d1.9 Problems 12: ^- N* c* w9 B, V. D+ Q
Bibliography 12
& ]+ c: k# |( f9 Q& }* Q! o# A6 K2 o
1 m, K$ `0 a/ x$ h
6 |6 S2 i4 T% ]& x# u5 V. g# X, @
% i- n8 l3 U: x  v9 ^2 j6 [' p
8 k+ A1 k" t9 d" N8 U0 v+ `+ [

3 O) M8 d/ z; @+ U5 X7 D  |$ Q3 N2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 X3 ]: j8 f+ T- ]& D' E
2.1 Introduction 14% Q. [- a. e& q# C6 l
2.2 Prediction of the Response of Linearly Viscoelastic Materials 144 J5 A! x6 ~+ z# u
2.2.1 Prediction of Recovery from Relaxation E(t) 14& n# w# ]. i) o6 @) j9 x
2.2.2 Prediction of Response to Arbitrary Strain History 15
' h/ v$ G6 [+ [7 G2 K7 L' N2.3 Restrictions on the Viscoelastic Functions 17) m" _  `; L" `! c" e% E
2.3.1 Roles of Energy and Passivity 17
$ a5 Z: f0 e' ?9 g4 Y# w2.3.2 Fading Memory 18: Z1 u' S' P9 n: o0 N
2.4 Relation between Creep and Relaxation 19- Z' V3 i0 B2 Y$ V( L" T* U& R
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 19. h% j7 e6 ?/ M( m/ d) U
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20! b# r2 K1 }7 K* M& _
2.5 Stress versus Strain for Constant Strain Rate 208 \7 W& O" K2 ^8 E% Z0 f; ~2 q. B
2.6 Particular Creep and Relaxation Functions 211 N; ^  p+ g  K, ^
2.6.1 Exponentials and Mechanical Models 21
; x0 _; u  s% F2.6.2 Exponentials and Internal Causal Variables 268 m8 X# k9 ?: D# b
2.6.3 Fractional Derivatives 27/ v* G5 t% t. ?$ z. Y6 @
2.6.4 Power-Law Behavior 28
$ L& g; I. @. a/ L3 `2.6.5 Stretched Exponential 29" J6 ^  u2 Z  P, }% B
2.6.6 Logarithmic Creep; Kuhn Model 29
2 ~+ [  E# E# V$ n+ b2.6.7 Distinguishing among Viscoelastic Functions 30
7 y8 a  k5 B4 Q  V9 |2.7 Effect of Temperature 30
/ {2 G- F' M* R8 L. W! P2.8 Three-Dimensional Linear Constitutive Equation 339 Z0 u7 Q6 g0 K7 R- s8 O- v  i, ~
2.9 Aging Materials 35+ K5 B* |+ U' \( L
2.10 Dielectric and Other Forms of Relaxation 35+ b0 v7 D6 n8 M/ i5 X  ]
2.11 Adaptive and “Smart” Materials 360 G) z. h8 E0 i0 _* H: _' _9 X
2.12 Effect of Nonlinearity 37
* A! a! R/ H; E. ]) I2.12.1 Constitutive Equations 37
2 x5 Q1 j) g$ T, `; |2.12.2 Creep–Relaxation Interrelation: Nonlinear 40& S/ j8 J( o5 d1 U" S( Q' b8 Y
2.13 Summary 43# C2 B- Z0 ?$ H& I! Y" T, S
2.14 Examples 439 W! h1 ?+ W4 D" g) R4 v" o
2.15 Problems 51) ?$ ^5 S% a; S4 q
Bibliography 52
; a5 B7 P. n7 g' F3 O# t3 A, q
( P4 V  }. K/ K6 x, l% s
: ^7 d, q* _, X" l' `

5 t9 H$ C# v; B; \1 d3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
/ K+ T& p& K! @" {4 f: b9 _$ ~( U3.1 Introduction and Rationale 55* K3 [: v; E' Y, _1 K
3.2 The Linear Dynamic Response Functions E∗, tanδ 56' x* x3 K3 d. Z5 x0 i- M
3.2.1 Response to Sinusoidal Input 57
% [8 j. w8 L1 U( v8 i; N$ M3.2.2 Dynamic Stress–Strain Relation 59
; g1 y/ Z% a, @3.2.3 Standard Linear Solid 62' j$ p- ?/ d: T6 T, t) U
3.3 Kramers–Kronig Relations 63
) W2 ^+ U7 {9 d* T3.4 Energy Storage and Dissipation 65- j0 x! [% \9 C) g
3.5 Resonance of Structural Members 67
% o. ]3 U/ B8 ^3 b1 C3.5.1 Resonance, Lumped System 67$ r9 A* U* q, v3 o
3.5.2 Resonance, Distributed System 717 S4 z1 J. d7 \' Y  {# ~
3.6 Decay of Resonant Vibration 74
& Q: A2 P5 B. Y3.7 Wave Propagation and Attenuation 77
( @; W; X' X2 A3.8 Measures of Damping 79
0 J1 }" y: Z$ r% C$ W$ `" {7 ]3.9 Nonlinear Materials 797 ?8 H4 H* O2 X* E" R% c$ Y) t! q
3.10 Summary 816 T1 A3 Z2 ^: ]. }  M- o
3.11 Examples 81* t- [% S% o7 V$ u7 \1 @
3.12 Problems 88; w/ N) ~. N5 a7 s- P( L/ W
Bibliography 891 a3 L8 ?0 u+ ~' M# `

' z4 F# b+ O" e0 \1 b, q! R1 H. l/ X: s0 U: y' c: d4 H
6 r4 t0 R* Z! E8 _( G
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91/ S& C7 N' C: z/ D4 ]2 W. T5 w
4.1 Introduction 91
0 ]1 P" _1 E! N5 R" J1 h4.2 Spectra in Linear Viscoelasticity 92% Z. Z! `2 n- t% J
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
, t# d/ h- K) N; Y& A$ H5 K4.2.2 Particular Spectra 93. p2 l7 T( v6 z% Q, y" V! \
4.3 Approximate Interrelations of Viscoelastic Functions 95
$ T; S  _% P6 L( N2 T4.3.1 Interrelations Involving the Spectra 95, c3 q' C% N% G. p( v! r
4.3.2 Interrelations Involving Measurable Functions 98# L# V5 u' Y* J4 l/ B6 n
4.3.3 Summary, Approximate Relations 101
' U! k6 n# ~& W& B4.4 Conceptual Organization of the Viscoelastic Functions 101
& F7 T2 w* I4 j2 I; P4.5 Summary 104
6 g4 w- D. q0 T( b% }5 w' |# t9 ^& T4.6 Examples 104
9 j; ^& R" Q, \( k: ^4.7 Problems 109
' H2 G7 e' |! x& l# Y- JBibliography 1090 s9 u4 h# D, D$ a9 a; E* X
# X; A% Z- ^& P# J

; }2 E% X/ h: g. [
7 n% X$ u; H/ l1 ~' e8 |) |5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 111
3 M1 V% a' L4 X  }8 M6 {5.1 Introduction 111
; Y1 L* X) R2 \' v9 F' I5.2 Three-Dimensional Constitutive Equation 111
5 i/ i# R) ?7 U5 _5.3 Pure Bending by Direct Construction 1127 q& \4 i  x* X' [
5.4 Correspondence Principle 1146 ?+ J. m0 g. H
5.5 Pure Bending by Correspondence 116
' T' z2 J( L7 q2 O6 ~5.6 Correspondence Principle in Three Dimensions 116
1 Z0 j2 ~: z% y2 r$ f" `5.6.1 Constitutive Equations 116
$ t* F9 q; Z, c8 z3 S# N+ G5 ~5.6.2 Rigid Indenter on a Semi-Infinite Solid 117+ H6 b: y/ ?  f
5.6.3 Viscoelastic Rod Held at Constant Extension 1197 e5 G1 d3 C: V4 ~7 F) T7 g
5.6.4 Stress Concentration 119: B/ Y9 h" y( z" x& ~* W
5.6.5 Saint Venant’s Principle 120
5 N; o' |" c, O8 w# a3 L- y5.7 Poisson’s Ratio ν(t) 121; H' w% }, b2 q  A( @  j3 F
5.7.1 Relaxation in Tension 121
! c8 y7 S' E! t6 [- u5.7.2 Creep in Tension 123
/ A( a4 e* r! Z7 u5.8 Dynamic Problems: Effects of Inertia 124; t/ d+ n: j0 s% v7 {
5.8.1 Longitudinal Vibration and Waves in a Rod 124/ O7 X8 Q7 j7 H. g2 X. w
5.8.2 Torsional Waves and Vibration in a Rod 125
' |  C# t. h% Z4 j6 \4 x0 ^5.8.3 Bending Waves and Vibration 128
0 ~; T% K3 G( w* @& O7 p5.8.4 Waves in Three Dimensions 129- F5 }8 _+ D0 e9 e
5.9 Noncorrespondence Problems 131
2 M5 B4 M5 c! X( |5.9.1 Solution by Direct Construction: Example 131
7 Z. _3 c# a3 w' g8 @) E9 N: p5.9.2 A Generalized Correspondence Principle 1325 ~3 q% R3 n" J+ J
5.9.3 Contact Problems 132
2 i/ y6 V7 G0 u; k7 ?  M1 w$ V5.10 Bending in Nonlinear Viscoelasticity 1335 y. y" B' U. e  f0 u* d7 h
5.11 Summary 1342 S8 s  ^" p+ T  Q* u* b  K
5.12 Examples 134
5 p! ?9 e/ a5 x+ _& h5.13 Problems 142
8 F* E! N3 H/ W5 N0 Y9 o2 y* cBibliography 1422 b& T& A( D" i* T

! C# K, N/ p$ Y9 P( k. M
, E* p) K8 p3 g/ T8 I) K! G' ]- q- m! w/ K) c
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145/ \2 Y1 Y. u# S) Z& \
6.1 Introduction and General Requirements 145- V3 {- A8 q, Y+ @" b8 b
6.2 Creep 146* H$ ]4 x8 M& }% ~  S, K/ K" x3 H
6.2.1 Creep: Simple Methods to Obtain J (t) 146
6 _7 C/ t* n  N$ y6.2.2 Effect of Risetime in Transient Tests 1460 \+ W# Q) _/ p2 f0 `% r; Q) `
6.2.3 Creep in Anisotropic Media 148
$ a0 @( J) ~; x/ M& Y6.2.4 Creep in Nonlinear Media 1480 K' h( W& g3 g: H# i
6.3 Inference of Moduli 150
# M0 Y+ X* u2 |! h8 B' Z% m/ Z6.3.1 Use of Analytical Solutions 1504 x3 Z5 _, |6 D
6.3.2 Compression of a Block 151
/ e8 t3 H8 a9 ~  }% ^6.4 Displacement and Strain Measurement 152
2 {# C! x5 G- l6.5 Force Measurement 1569 }* d4 X' d- ~# k
6.6 Load Application 157
6 ?% T0 E9 Z$ a8 l4 q4 j% }6.7 Environmental Control 157/ `& W1 p) ]: D$ a6 L
6.8 Subresonant Dynamic Methods 1581 q  L( W/ t, g! p0 l& c1 f. `
6.8.1 Phase Determination 158
# R; C4 ^" }+ J) B3 ~+ O) K8 p6.8.2 Nonlinear Materials 160
. r* B* p  x; F8 F/ K- g% y! L/ `6.8.3 Rebound Test 161
  }3 d& v8 p3 \% m$ I5 o' x6.9 Resonance Methods 161! @1 T& V& [; o8 K7 q$ d3 |
6.9.1 General Principles 161
$ x5 x: b& N/ L6.9.2 Particular Resonance Methods 163& p% ~, c$ Q/ ^/ }
6.9.3 Methods for Low-Loss or High-Loss Materials 166
9 C( h" t' m# D6.9.4 Resonant Ultrasound Spectroscopy 1681 c: _+ b+ N+ ~2 J) i; K
6.10 Achieving a Wide Range of Time or Frequency 171, g: Y+ k! g: o2 j) C' k
6.10.1 Rationale 1718 [( V' @- y5 G! q
6.10.2 Multiple Instruments and Long Creep 172" K2 p: g9 ?1 h' w& V3 T9 a. B
6.10.3 Time–Temperature Superposition 1729 L* F# {3 H# t- e! S- V  g
6.11 Test Instruments for Viscoelasticity 173
4 i' X3 G& w+ Q5 q6.11.1 Servohydraulic Test Machines 173
! Q6 q% J8 R9 e, u0 L* r1 r, I6.11.2A Relaxation Instrument 174# F& \* T! l# k' q% M
6.11.3 Driven Torsion Pendulum Devices 174
% v2 U. c) _* B: [( D1 X% b6.11.4 Commercial Viscoelastic Instrumentation 178
, O; @1 f, A% z6.11.5 Instruments for a Wide Range of Time and Frequency 179
, z% Q& L1 i0 h9 A6.11.6 Fluctuation–Dissipation Relation 182$ T, C! l1 C% F1 \1 `; \6 X- P
6.11.7 Mapping Properties by Indentation 183
. ?6 H3 B! h2 b. N& W- n0 e6.12 Wave Methods 184- V% j, O0 _! e% z9 u7 B
6.13 Summary 188
/ A$ g# l3 p5 D: K3 X6.14 Examples 188- ~) t8 Z) k- A$ m: ~
6.15 Problems 200. L( F) g( ^# ~
Bibliography 2015 ~3 V; p' T% j6 F4 @6 G- L

/ T# |3 n2 X1 D% O* [9 |  ~/ c, _; F/ _$ Z8 h# T* b/ I2 V! s& y
& R* X8 S  J/ o) E7 O5 w
7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 2075 p. I5 t! K& t5 F& V8 S. J
7.1 Introduction 207
+ y$ d: |9 h4 _, t4 S+ i+ s7.1.1 Rationale 2073 D7 S' g) d8 [/ \9 x6 \
7.1.2 Overview: Some Common Materials 207% p$ D4 }5 O0 |1 a, J
7.2 Polymers 2083 ]7 f9 p9 K0 l# \
7.2.1 Shear and Extension in Amorphous Polymers 2082 g, y$ q/ D3 Y0 \. B9 `
7.2.2 Bulk Relaxation in Amorphous Polymers 212
; S7 E' {! I+ [, E, d7.2.3 Crystalline Polymers 213
8 Z, j# K; o  l9 w3 p7.2.4 Aging and other Relaxations 214
' M6 e" Q* U. [# I- b7.2.5 Piezoelectric Polymers 214# ?; q7 B! m  _: ^5 X/ Q
7.2.6 Asphalt 214
. a5 _$ r1 h; v! Z7.3 Metals 215  {2 g) n0 C' r" d) C
7.3.1 Linear Regime of Metals 215
& B* I2 m( ]2 W( P/ ?$ }! B! R+ B; G7.3.2 Nonlinear Regime of Metals 217) p0 T8 r# w% _+ L* m) @
7.3.3 High-Damping Metals and Alloys 2196 J( d2 P$ ?# u1 a* J
7.3.4 Creep-Resistant Alloys 2245 a5 ^9 ?* b* u6 C% W
7.3.5 Semiconductors and Amorphous Elements 225
3 ^& M! g8 ]" m7.3.6 Semiconductors and Acoustic Amplification 226
' P3 q6 _$ c8 i  |$ g3 D- T  R. E: i7.3.7 Nanoscale Properties 226! H% F+ C8 _$ R& K" c0 J
7.4 Ceramics 227
( I' {* Q9 r: y& B7.4.1 Rocks 227! F$ M! E6 `/ _4 j
7.4.2 Concrete 229! R, T% t+ i) p  O$ U
7.4.3 Inorganic Glassy Materials 231& D2 R* i3 y- f1 ?
7.4.4 Ice 2311 Q) d& M/ A! Y) L9 H6 U# s
7.4.5 Piezoelectric Ceramics 232; L% J* V/ m* O4 w% w
7.5 Biological Composite Materials 233. z* c8 N& B, i1 H4 }( s2 {
7.5.1 Constitutive Equations 234
4 u* f/ M5 T0 z. E# g3 B# `/ g7.5.2 Hard Tissue: Bone 2349 K0 K3 o" o3 A% }* n% _+ I2 W+ b/ g
7.5.3 Collagen, Elastin, Proteoglycans 236
" P3 g, Q( _$ o& y& i. j* f7.5.4 Ligament and Tendon 237
0 V! F$ p& J8 D- P/ C7.5.5 Muscle 240
# ~5 p. U& O+ K! Z7.5.6 Fat 243  {- o, R: Q$ ~& S, g* E$ [1 K
7.5.7 Brain 2438 n# O! `0 z! Z6 @8 H' {: e, U
7.5.8 Vocal Folds 244: D4 }4 n* L" R% y
7.5.9 Cartilage and Joints 244
; z; T1 I% Y9 O- w1 d1 a7.5.10 Kidney and Liver 246
( m4 j5 ~; b! t/ |+ \! D7.5.11 Uterus and Cervix 246
4 l; u- s; R, L5 R) W7.5.12 Arteries 247: B  @+ h1 T! [0 u! x: O" q6 }
7.5.13 Lung 248
( B+ N( x8 s6 A7 f. `7.5.14 The Ear 2487 _6 j* K7 u+ ]& K- j. l$ V
7.5.15 The Eye 249( M- M' I. V9 i
7.5.16 Tissue Comparison 251% R; X/ _& n  m# l& ~$ G  [( b' m3 v& D
7.5.17 Plant Seeds 252
. d5 e8 ]# r" f" W" d( o8 ]7.5.18 Wood 252
( C& R, F0 F" Q1 \% o: F( Q% h/ }* |7.5.19 Soft Plant Tissue: Apple, Potato 253  N( V- l/ H; e/ ?1 y" N
7.6 Common Aspects 253
1 R6 q) \* ^+ m* x3 O7.6.1 Temperature Dependence 253
& R  D. k9 I# r: `5 \0 R4 ^, I2 Z7.6.2 High-Temperature Background 254
+ Z2 C& L4 \7 E" f0 ~( o5 x7.6.3 Negative Damping and Acoustic Emission 2556 |  V% m# S! k4 o2 {2 \
7.7 Summary 255
% i# Q2 ~! b. m7 m9 S& p; \* F# n7.8 Examples 255
7 |8 _0 M2 Y7 n( O! k7 m7.9 Problems 2566 m" P" R, }8 x
Bibliography 257/ ]8 W( E9 T! d6 Z
( N; y8 S  z, {9 g+ J

# O9 \' w, z; a4 b
0 f) Y! ?/ m$ {8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
" x+ ]# u+ p, B7 O) k. w8.1 Introduction 271
  p, v( P) o# [* P3 ^& l. u1 F8.1.1 Rationale 271! r( a: M! n0 ^, q* \. q
8.1.2 Survey of Viscoelastic Mechanisms 271: R4 {8 P; Z; b5 C
8.1.3 Coupled Fields 273$ M. |$ X  P0 J# i$ v) l
8.2 Thermoelastic Relaxation 274
; x& A, A/ ]7 z! n& P8.2.1 Thermoelasticity in One Dimension 274. T4 Z) v/ a7 I* N" a3 M% @
8.2.2 Thermoelasticity in Three Dimensions 275
' T5 z) U# f9 [" g: J) n8.2.3 Thermoelastic Relaxation Kinetics 276
+ o1 h4 H" a  @( ~8 G8.2.4 Heterogeneity and Thermoelastic Damping 278
* J2 [& Z+ s) W9 D  O8.2.5 Material Properties and Thermoelastic Damping 280
/ u7 q# L+ K, _7 V& W8.3 Relaxation by Stress-Induced Fluid Motion 280. x; J% D9 j5 |4 L
8.3.1 Fluid Motion in One Dimension 280, e) W6 m: l- R# i3 V1 ]  ]- F9 O
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281; Q1 u' T8 q$ w; ?; c6 `" }4 Z
8.4 Relaxation by Molecular Rearrangement 286
. [0 M$ w( P  E, h7 I8.4.1 Glassy Region 286# }- D! A: L, X
8.4.2 Transition Region 2874 w) u1 N4 \( ]& H8 a1 ]4 x
8.4.3 Rubbery Behavior 289
6 r, V2 K4 y$ G& [: |8 m8.4.4 Crystalline Polymers 291! u) |5 B# m8 k& p
8.4.5 Biological Macromolecules 292
  x, T' W3 A* H' N8 h8 X' s8.4.6 Polymers and Metals 2922 N4 w  R* }* N7 C
8.5 Relaxation by Interface Motion 292
4 Z6 h4 z, k$ X8 c4 p- \# _8.5.1 Grain Boundary Slip in Metals 2922 M/ S1 T& x' g+ ^0 B7 m* }
8.5.2 Interface Motion in Composites 294- e8 L" U4 U& o( X. w4 _
8.5.3 Structural Interface Motion 294
+ z0 x  I5 `+ M, }# K7 l$ t8.6 Relaxation Processes in Crystalline Materials 2944 o' n+ D0 y6 ^
8.6.1 Snoek Relaxation: Interstitial Atoms 294
* M' x3 A) y+ _7 H8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
! T$ Q8 u4 Y4 V0 `* w8.6.3 Gorsky Relaxation 299
- Q7 b% p( k) J3 Z; e8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 3006 O+ ?! M- i. n
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
- v- s% ?' S$ b! K8.6.6 Relaxation Due to Phase Transformations 305
2 [2 |3 [- W$ x: }1 N6 S2 b8.6.7 High-Temperature Background 314
( S7 r- ~  k* O. J  C8.6.8 Nonremovable Relaxations 3155 \" X! X6 j) u$ Y  f
8.6.9 Damping Due to Wave Scattering 316
: x$ s2 ~$ e. {& N$ x8.7 Magnetic and Piezoelectric Materials 316- w  ]+ c$ P5 S; r1 ~+ c
8.7.1 Relaxation in Magnetic Media 316
: X3 G" l: a& f0 Y# S/ x6 l8.7.2 Relaxation in Piezoelectric Materials 318! _- \! V6 M/ B! z# B7 F
8.8 Nonexponential Relaxation 322
6 ^2 ~! }3 S2 X+ h, f$ N& c8.9 Concepts for Material Design 323
' R) W: g! _, f$ g8.9.1 Multiple Causes: Deformation Mechanism Maps 3233 z- q+ j5 [: i/ l7 z+ F
8.9.2 Damping Mechanisms in High-Loss Alloys 3268 _/ \! p, W# {0 B
8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326/ ?0 `2 n4 O& e
8.10 Relaxation at Very Long Times 327" L+ {/ C" D- R1 D$ D6 m( u4 v
8.11 Summary 3273 b* `$ X1 g, M8 L9 F- H( R
8.12 Examples 328
- m9 @0 b9 J4 V8 i' q6 \5 T8.13 Problems and Questions 332
. u& c4 ?# r% d2 b, {Bibliography 332
7 ~6 t" U9 p/ A( q, _1 J* Q" \( }

. w4 z6 q' L6 M, a2 I/ y$ i3 r
9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341' l2 k4 Z* f* n! y9 R8 ]- e8 s
9.1 Introduction 341& |' s$ p$ y  u! S0 w
9.2 Composite Structures and Properties 3411 }) M% z/ I6 T. `0 E
9.2.1 Ideal Structures 341* y3 W0 W+ V! b
9.2.2 Anisotropy due to Structure 342( p9 i$ I' g+ b, ^) S
9.3 Prediction of Elastic and Viscoelastic Properties 344" c$ \% x; u0 P9 }0 ]: l
9.3.1 Basic Structures: Correspondence Solutions 3446 d) ?3 Z; \3 G% L; h# _. c5 @
9.3.2 Voigt Composite 345
2 B  E' L5 T$ v4 Q4 n$ r1 P9.3.3 Reuss Composite 345: j/ f' `9 \% o/ @
9.3.4 Hashin–Shtrikman Composite 346
6 P5 K1 c0 i+ ?% z/ r1 v+ ^- v9.3.5 Spherical Particulate Inclusions 347
( X$ s' s& L' n9 g+ w9.3.6 Fiber Inclusions 349; j0 I* x# C& @+ C4 X
9.3.7 Platelet Inclusions 349) |  I, U5 u# a6 w5 o" Z+ Y5 \" Q
9.3.8 Stiffness-Loss Maps 350
  l- `# q& J- Z$ V) Y8 D" k9.4 Bounds on the Viscoelastic Properties 353$ c2 u- p+ F9 R
9.5 Extremal Composites 354
+ j3 k8 h2 i6 `$ F; U- f9.6 Biological Composite Materials 356- i8 t  p0 U6 F) U' M' C
9.7 Poisson’s Ratio of Viscoelastic Composites 357
" Y. }6 `; Z; a5 N( p9.8 Particulate and Fibrous Composite Materials 358
4 }7 g( S& @7 b: u9.8.1 Structure 358
* l; U9 W, t0 b  h0 X4 x- D9.8.2 Particulate Polymer Matrix Composites 359
/ H/ b1 O, @2 ^9.8.3 Fibrous Polymer Matrix Composites 361
+ n2 Q6 H3 j; e8 |. m9.8.4 Metal–Matrix Composites 362
4 o6 ^3 A/ D' I  X4 k0 b% m! M0 R9.9 Cellular Solids 363
9 s6 h6 k0 s$ x' c7 Z9.10 Piezoelectric Composites 366
9 C7 R" t; r4 c# _1 h0 T0 k4 f9.11 Dispersion of Waves in Composites 366
9 k* D% A& q. z" l" f9.12 Summary 367; o# R3 ~8 e. T) U5 ^/ g
9.13 Examples 3672 E, S+ J. V# F& ~2 H: a' a1 N
9.14 Problems 370
1 J' D% K# X5 I& vBibliography 3706 [# y. Y, c* _( R( Q- E1 C' [

& W1 x1 u5 A7 t- u+ H3 q" }: [0 \5 F+ d; n* P, {) ^( q# L- B
5 C  T* T0 u( z1 ?6 ^( w
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377
* f# O' f8 ^8 ?6 {* ~0 N10.1 Introduction 377
9 D' J( I) P2 v7 J1 W# i" u10.2 A Viscoelastic Earplug: Use of Recovery 3772 D, ?5 y( n- \( G* |. M" ~6 Q
10.3 Creep and Relaxation of Materials and Structures 378
- F+ Z9 |7 V0 [, M' J. Y# m' Z: m) M10.3.1 Concrete 378+ m0 {" F# Y  Z4 ?  C" p
10.3.2 Wood 378
4 Z/ E( [3 ?# n  D! E: Q7 D2 ^10.3.3 Power Lines 379
2 V0 G7 _7 N) f9 S1 a10.3.4 Glass Sag: Flowing Window Panes 380
. d, ?* T# `6 S4 E2 s10.3.5 Indentation: Road Rutting 380
4 S% ]9 S; k/ j/ `* u1 w10.3.6 Leather 381
) n; r8 P2 I5 B& E10.3.7 Creep-Resistant Alloys and Turbine Blades 3815 e) u  x1 I1 x( r' N; r2 G
10.3.8 Loosening of Bolts and Screws 382
% I9 p% V, ?5 S5 u% f, k10.3.9 Computer Disk Drive: Case Study of Relaxation 384
- [' o& Z; z1 G5 j10.3.10 Earth, Rock, and Ice 385
! G2 T* _- |/ T( T* k7 R: J10.3.11 Solder 386
" E6 H, j' Y  ~8 @10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
4 c/ u# I4 u. ?: ]% _10.3.13Tires: Flat-Spotting and Swelling 388
; ?2 V, W. M; v  J10.3.14Cushionsfor Seats and Wheelchairs 388
- o8 o2 p/ p& C5 P* X3 _. K7 m10.3.15 Artificial Joints 389
% \+ C5 f4 M. J  l' \10.3.16 Dental Fillings 389
/ m: V* K/ `& l/ n10.3.17 Food Products 389$ z. t- `* T5 m9 u5 g
10.3.18 Seals and Gaskets 3909 t: W5 I- k8 {! @4 m
10.3.19 Relaxationi nM usical Instrument Strings 390
9 Y6 k9 {4 p; e; \, G10.3.20 Winding of Tape 391
1 S! Q. m: [; s" e* d10.4 Creep and Recovery in Human Tissue 391
* O% P) m# ^8 x$ d, c7 R10.4.1 Spinal Discs: Height Change 391, b4 F, _4 \5 `0 T* d+ j
10.4.2 The Nose 392; F. B7 k2 ?$ t& E/ o0 C) P  U
10.4.3 Skin 3926 H% k8 S1 I+ @. D! Q. ]$ g8 P# }
10.4.4 The Head 393
2 a$ q2 F  I  |9 S/ m# J3 P10.5 Creep Damage and Creep Rupture 394, a6 M( N+ Q, `" y; h% m4 o/ l% Q
10.5.1 Vajont Slide 394
/ N4 o4 |6 R( g( P6 f" W10.5.2 Collapse of a Tunnel Segment 394
+ P* p6 f7 {  N6 J; H; x: O* |5 S10.6 Vibration Control and Waves 394* M6 d2 \: Z- B9 {  v8 J* B4 q
10.6.1 Analysis of Vibration Transmission 394# d0 E% W! W' q" I
10.6.2 Resonant (Tuned) Damping 397
0 v5 X* V7 k* J1 q0 x: r% ?' Q! h10.6.3 Rotating Equipment Vibration 397
1 ?& F' l/ O) k2 F10.6.4 Large Structure Vibration: Bridges and Buildings 398
! B& B3 E, q+ U) Y4 _) ^10.6.5 Damping Layers for Plate and Beam Vibration 399
* x* J/ ^6 T; b6 n+ Z7 R  E2 T10.6.6 Structural Damping Materials 400$ \( [3 B, D3 I( N& h
10.6.7 Piezoelectric Transducers 402
% |- ?1 K1 K' b9 S& Z% M10.6.8 Aircraft Noise and Vibration 4020 ?0 u; E# [/ m, d& J
10.6.9 Solid Fuel Rocket Vibration 404
. F" h! [, d6 G  y% C3 _8 l10.6.10 Sports Equipment Vibration 404, K( W- f2 q  y+ s0 X
10.6.11 Seat Cushions and Automobiles: Protection of People 404, u8 }. K! j4 j7 @$ q, u. \( w1 k
10.6.12 Vibrationi n ScientificI nstruments 406
  S3 L( t5 r( Q4 n4 v+ U8 ]2 m10.6.13 Waves 406) h( P! o+ V7 x/ u) ?6 H5 e2 |1 e
10.7 “Smart” Materials and Structures 407
: S6 u! Z: g) b& M10.7.1 “Smart” Materials 407
' d- V' D  O; @$ W10.7.2 Shape Memory Materials 4087 j7 F# b4 O& T/ x# u
10.7.3 Self-Healing Materials 409
5 n% S/ }. b( z. Z  q* _10.7.4 Piezoelectric Solid Damping 409$ @3 \$ H. U% L" k" B. x! L
10.7.5 Active Vibration Control: “Smart” Structures 4098 a+ f, q2 e  d/ ^* [- n
10.8 Rolling Friction 409# {2 Q9 P6 ^( A
10.8.1 Rolling Analysis 410
. q8 }# V/ y7 E6 j0 L# Y10.8.2 Rolling of Tires 411! ^4 \2 L3 i& v3 f: i% ]! s- M% [
10.9 Uses of Low-Loss Materials 412  S* R3 X4 n, q
10.9.1 Timepieces 412
; n8 p* w7 y( K& Y& T# K10.9.2 Frequency Stabilization and Control 413
+ [/ }' Z* G- d: f5 }- E& K10.9.3 Gravitational Measurements 413
8 b. q$ H# M0 I  J5 [10.9.4 Nanoscale Resonators 414
# u5 b* o9 Z+ {7 f4 V  ~10.10 Impulses, Rebound, and Impact Absorption 4142 F& {0 |) |9 t: h8 U) u3 z% I
10.10.1 Rationale 414' {+ H# [! G3 o! C# W
10.10.2 Analysis 415
- ]4 h2 f: N1 o10.10.3 Bumpers and Pads 418' R8 r, N) d! R) ^
10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419) x/ f8 T. ?) S* r
10.10.5 Toughness of Materials 419* \! `& y2 g: C/ J! M4 b
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420
3 a2 Y0 V/ x" U& f# W; F( @5 X0 e6 J10.11Rebound of a Ball 4216 k+ P" {7 u4 H& z4 W
10.11.1 Analysis 421
% j! {& m- L2 |# j  Y10.11.2 Applications in Sports 422
, ?" I9 C6 G7 h9 c! J; E5 N' Y  X10.12 Applications of Soft Materials 4245 T8 X& r/ F$ N; l$ T
10.12.1 Viscoelastic Gels in Surgery 424
& l3 R2 L( d' p/ [7 X10.12.2 Hand Strength Exerciser 424
$ Z  h) D/ R/ i- K" U10.12.3 Viscoelastic Toys 424
- l% H7 l4 C( o5 f3 s( I( f0 t% z; |10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425# i( ]. }* k& E
10.13 Applications Involving Thermoviscoelasticity 425" W8 T  w4 V* y1 p; x
10.14 Satellite Dynamics and Stability 426$ I2 L1 D  U& U0 q& i* q
10.15 Summary 428
) }0 r8 _; D0 U; c$ p, {10.16 Examples 429: a# _  F* i4 j/ l& K; H
10.17 Problems 4315 e- ~3 M8 n" ]$ R& _- A* h% P
Bibliography 4316 r* R& r  K8 g7 t# M

- j. G! [' s* n; [: E  m
& z7 }' s( {7 K; h! Z* v4 ^; [) S4 w* `4 @/ U# _3 E
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441/ x8 c! @% J& ]2 v/ ?9 A! J
A.1 Mathematical Preliminaries 441+ \" I7 L; G* g6 \& c: k3 a
A.1.1 Introduction 441
9 N2 @" r+ U+ WA.1.2 Functionals and Distributions 4410 ]* H# m/ b9 Y! N
A.1.3 Heaviside Unit Step Function 442
5 V2 R+ i  X- eA.1.4 Dirac Delta 4422 h6 T8 @" @! _
A.1.5 Doublet 443. [/ T. b* W1 A7 y7 v- M/ H
A.1.6 Gamma Function 445+ \9 [, K6 _6 ?( z5 D( G- ]
A.1.7 Liebnitz Rule 445
) j- U  s" Q7 V% q/ i% o! QA.2 Transforms 445
. e5 y: w; y( gA.2.1 Laplace Transform 4461 v$ z7 n$ K: q" p
A.2.2 Fourier Transform 446
& p) A7 X. j3 _( ?% }1 N  `! [A.2.3 Hartley Transform 447
* V4 g3 I+ I8 E" ^1 P1 TA.2.4 Hilbert Transform 447
2 F" \8 e8 z' B0 [  XA.3 Laplace Transform Properties 448" ?- d' ^! s  q2 Z1 X
A.4 Convolutions 4494 Z" q6 j) ?$ {2 s
A.5 Interrelations in Elasticity Theory 451; a' p8 C, O0 ?1 a% S6 {
A.6 Other Works on Viscoelasticity 4512 S( S# ^( b: B. w; w+ `4 H
Bibliography 452' a2 J; ^; H0 h" l2 O* Y1 P0 U
! n1 g+ W" S, {7 m& `5 V

" W/ x3 o' R( ]# |& o: O( |4 QB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4558 }( X0 Q! R' \+ ~) H5 c
B.1 Principal Symbols 455! o8 K* M4 o* k7 _1 F
Index 457
- p( m4 E; v* i- F
. c! t' ]! M" r9 }, g, H* z
3 {7 Q+ S; Z% D& s! F
您需要登錄后才可以回帖 登錄 | 注冊會員

本版積分規(guī)則

Archiver|手機版|小黑屋|機械社區(qū) ( 京ICP備10217105號-1,京ICP證050210號,浙公網(wǎng)安備33038202004372號 )

GMT+8, 2025-7-15 09:03 , Processed in 0.105003 second(s), 22 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回復 返回頂部 返回列表