人妻暴雨中被强制侵犯在线,亚洲国产欧美日韩精品一区二区三区,四虎影免看黄,国产无人区二卡三卡四卡不见星空

 找回密碼
 注冊會(huì)員

QQ登錄

只需一步,快速開始

搜索
查看: 1280|回復(fù): 0

英文全書下載 Viscoelastic Materials. Roderic Lakes 2009 《粘彈性材料》

[復(fù)制鏈接]
1#
發(fā)表于 2015-1-9 22:34:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
本帖最后由 陳小黑 于 2015-1-9 22:37 編輯 % u' n3 S; ]2 ^) y- z8 F
. I! ?3 M" ]; A1 v$ S" a
Viscoelastic Materials Roderic Lakes 2009 Part 1-2.rar (4.42 MB, 下載次數(shù): 6)
. l( A2 h! x5 n9 ~- b' ^* ?6 E7 ]9 _. v0 P9 J
Viscoelastic Materials Roderic Lakes 2009 Part 2-2.rar (3.39 MB, 下載次數(shù): 6) 3 ]# r8 w/ r2 J

& W) V3 M( m: _1 d& M目錄0 D, B" f$ Q- Y/ g- Z1 w! A4 J

: i* A6 o! r9 sContents
/ t9 {" l$ O8 z6 k1 z. e
. W. h! ~; J  a- H0 @3 [/ D" E. h3 XPreface page xvii
* ?: j4 {% E4 o1 Introduction: Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- c- f' q  _, L% y
1.1 Viscoelastic Phenomena 1
% V9 k0 w8 p& W* A& c+ M: o( C1.2 Motivations for Studying Viscoelasticity 3: B: M' u' t. r' R$ b
1.3 Transient Properties: Creep and Relaxation 3
6 u' W4 j: s2 L; T1.3.1 Viscoelastic Functions J (t), E(t) 3
: l. x$ ~8 m! Q9 y# O1.3.2 Solids and Liquids 7
9 |" x0 m. ?/ w0 g+ G" X1.4 Dynamic Response to Sinusoidal Load: E∗, tanδ 83 s5 @. f8 V; R
1.5 Demonstration of Viscoelastic Behavior 105 P0 `! I# L9 U8 d1 o' j/ g
1.6 Historical Aspects 10
% \$ y+ X9 N9 L, Y) y- ^- X1.7 Summary 11
. r/ b* b! x) n6 V6 n3 s1.8 Examples 11
, g+ s" j9 |" l. \- O) B$ g1.9 Problems 12
' N  w; V( t+ e1 }2 w& WBibliography 12
2 _+ e; W( u/ l1 ?8 _( O% D. B! a1 S" H

( H, `, q/ o, G; g$ b) @
8 `% h& ?0 G6 {! M/ ~, O$ V7 h, y5 d% V2 {4 }9 ~
# F3 [  P) Q. U6 u2 ^( K

& n1 g$ G+ \0 F: X1 g% z$ {& V2 Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8 m; d8 s/ j/ ~/ r! B, O7 w+ e2.1 Introduction 14* l% n1 k+ b  }
2.2 Prediction of the Response of Linearly Viscoelastic Materials 14
) y1 |. B7 g& ]. T1 v2.2.1 Prediction of Recovery from Relaxation E(t) 14
' F7 l, K  b: p' E! O2.2.2 Prediction of Response to Arbitrary Strain History 15( e1 Q5 z% i, @
2.3 Restrictions on the Viscoelastic Functions 17
# ]. g- H2 a3 A& _) N" r4 K2.3.1 Roles of Energy and Passivity 17
3 g' c3 p3 L0 O4 c/ F2.3.2 Fading Memory 18$ Z* S/ s1 b' _: _+ T
2.4 Relation between Creep and Relaxation 19: J. e# [# E* _. x; f
2.4.1 Analysis by Laplace Transforms: J (t) ↔ E(t) 199 f. [" I" l8 I0 j( x  h- ^1 `: p
2.4.2 Analysis by Direct Construction: J (t) ↔ E(t) 20
& c. B2 d5 B. n% }5 w7 N2.5 Stress versus Strain for Constant Strain Rate 20
/ d: S" {% x( }' x2.6 Particular Creep and Relaxation Functions 212 A. S4 l; u5 ~8 b' {) J( v
2.6.1 Exponentials and Mechanical Models 21
; [& X/ u' ]( R% B+ ]- L5 c9 I2.6.2 Exponentials and Internal Causal Variables 268 q. B* j5 q% ^  f
2.6.3 Fractional Derivatives 27
# L  p* l& O# X2.6.4 Power-Law Behavior 28) k; g6 M6 R+ p8 f+ l, n* M0 w
2.6.5 Stretched Exponential 29
% U: _9 x4 K& }2.6.6 Logarithmic Creep; Kuhn Model 29% _" `* }* T. q( {* K3 L
2.6.7 Distinguishing among Viscoelastic Functions 30
4 o7 S# Q* K. [9 S$ }9 o2.7 Effect of Temperature 30' ~( A( Y6 C3 j( p1 t8 c8 ]2 M
2.8 Three-Dimensional Linear Constitutive Equation 33
; g0 }4 p& |$ T' @$ {- C2.9 Aging Materials 354 x# N" `" D5 ]; ~  h5 }+ S0 T
2.10 Dielectric and Other Forms of Relaxation 35
' J2 U4 S5 @+ K( D2.11 Adaptive and “Smart” Materials 362 `& C6 r  Z2 d  L+ ]4 Q% M0 J3 u
2.12 Effect of Nonlinearity 37
: a2 V; r5 I; P  b$ H% [2.12.1 Constitutive Equations 37
8 H9 O4 S6 D4 f! B- h' }+ P2.12.2 Creep–Relaxation Interrelation: Nonlinear 40
; R  e) T. t- I. G2.13 Summary 43
' q. G' ^' a' B2 _2.14 Examples 43/ E( F) f4 {6 z1 T
2.15 Problems 51' o0 O0 f( w2 j/ e& p( J' I" J  F
Bibliography 52
- }0 I9 o  P& B# M; T0 ]4 p* e  n8 u7 S+ |3 V+ A  |

  [( \7 T2 y- ~( N! d, S
" M7 n3 `! u3 O1 X6 p7 I2 D0 u/ N0 V# g' C; V# V
3 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 U. V& C# ?8 M1 F( x6 G
3.1 Introduction and Rationale 55
9 u' ]1 s1 F9 T5 h3.2 The Linear Dynamic Response Functions E∗, tanδ 56
7 \  X7 Q* D9 Y, M% f$ y" N$ n$ F3 C3.2.1 Response to Sinusoidal Input 57
. D3 r* M, k2 }8 q+ z8 D5 T3.2.2 Dynamic Stress–Strain Relation 59- ?; Z! |3 ^* p5 e  {, n9 I
3.2.3 Standard Linear Solid 62
1 }' M; P' p/ Q( @0 a: T/ Q3.3 Kramers–Kronig Relations 63* ]- @! J- O* Q4 g( t. _" }1 y
3.4 Energy Storage and Dissipation 65
, i* X" g  T, y3.5 Resonance of Structural Members 67: ]6 A) V8 J% Q4 I# O
3.5.1 Resonance, Lumped System 67/ F6 S& }/ ]9 X1 }' ^* r' A
3.5.2 Resonance, Distributed System 710 q5 s2 j3 g( [. w- Y
3.6 Decay of Resonant Vibration 74
) ?& A$ |* k& y# l4 ?+ T3.7 Wave Propagation and Attenuation 77: ]5 [4 D& P7 K! w
3.8 Measures of Damping 79
/ |; t7 K: W2 f7 @) U. E& L* m3.9 Nonlinear Materials 79' C. f9 f$ ]6 T) y
3.10 Summary 81
8 T% e  i" q7 m, m. f3.11 Examples 811 R( j! C  A3 q
3.12 Problems 88$ g' t0 Q' j# g; m0 @1 _+ G& b4 C9 E
Bibliography 89
  d' b5 Y4 ~) q) r5 `6 H+ R+ n, f5 @1 L  Y* \  h4 R
+ t; w' `! W! ^0 j
5 H8 W- s% f0 Z" l: r
4 Conceptual Structure of Linear Viscoelasticity . . . . . . . . . . . . . . . 91# H% w4 j* s, Z2 S$ b% R
4.1 Introduction 91
: ^/ B, e8 I( ]4 G- [1 t, P: `4 d' k! U4.2 Spectra in Linear Viscoelasticity 92( ^9 ~5 s& p; O8 E( t
4.2.1 Definitions H(τ ), L(τ ) and Exact Interrelations 92
3 @6 U$ L1 a8 j1 D/ g: ~) a4.2.2 Particular Spectra 931 k- k- N* F. V$ B# k5 e/ O
4.3 Approximate Interrelations of Viscoelastic Functions 95
8 u5 ~* c( ~; e4 |, g4.3.1 Interrelations Involving the Spectra 954 H4 F; M, {% |  m4 w
4.3.2 Interrelations Involving Measurable Functions 98$ g' m# r- y: P4 q
4.3.3 Summary, Approximate Relations 101) k0 D7 M  L; g
4.4 Conceptual Organization of the Viscoelastic Functions 1017 I. B- x# {6 B& |* m4 u
4.5 Summary 104
: e" r/ v5 A! B8 M1 P7 \( v4.6 Examples 104
- M0 H) X6 V5 t4.7 Problems 109
, G' Q0 p- N/ H4 B6 jBibliography 109
, E# Q  N  ~% F8 T* H1 g7 e, o7 J" L8 r" I
! b- n" P: I  }' Q

9 Y( S1 H' p4 g- T: j7 d( ?/ |8 ]' [5 Viscoelastic Stress and Deformation Analysis . . . . . . . . . . . . . . . 1114 |; g; l; Z! ~
5.1 Introduction 111% V# F, _# J( ]6 J) W( Z. c) _
5.2 Three-Dimensional Constitutive Equation 111  i$ o8 S. v0 w
5.3 Pure Bending by Direct Construction 112, _5 n  Q  V5 C, O2 D0 R6 [
5.4 Correspondence Principle 114
# G+ H: T: L) s( F3 Q1 R  e' T* l5.5 Pure Bending by Correspondence 116
( J$ B: h; f. O4 \5.6 Correspondence Principle in Three Dimensions 116
4 p3 w! T, {7 l7 {0 t' t$ j5.6.1 Constitutive Equations 116
. p; d! R: d/ g* e8 ~# F5.6.2 Rigid Indenter on a Semi-Infinite Solid 117
3 r( e/ @; N7 x6 z2 c5.6.3 Viscoelastic Rod Held at Constant Extension 119
: _9 w% ], F& E# C6 |2 B5.6.4 Stress Concentration 119! M7 s8 O, y' |/ S; M
5.6.5 Saint Venant’s Principle 120
! j9 @3 p; b1 B) _1 K2 I5.7 Poisson’s Ratio ν(t) 121
8 ~* I6 p& m1 y8 O4 s: R; J) n- `) [9 z) D5.7.1 Relaxation in Tension 121
. T6 t# U7 L% c) U: a. E5.7.2 Creep in Tension 123' ]1 @& {' ]; s5 D
5.8 Dynamic Problems: Effects of Inertia 124& {( ]. c6 v4 f6 z6 Z( h
5.8.1 Longitudinal Vibration and Waves in a Rod 124( h( s3 m: q& \$ z: O/ a7 y
5.8.2 Torsional Waves and Vibration in a Rod 1255 m9 e+ A  K- }* N" P; y5 E1 U+ r
5.8.3 Bending Waves and Vibration 128# I7 ^" }, D  a' R8 v3 u
5.8.4 Waves in Three Dimensions 129/ [0 L6 q; i! c8 d
5.9 Noncorrespondence Problems 131
# }# N; L4 ^' b! X5 V1 c  L5.9.1 Solution by Direct Construction: Example 131
8 z& D9 C, q0 {* ?4 `) x5.9.2 A Generalized Correspondence Principle 132
' _1 @2 j0 ?6 y8 z  k5.9.3 Contact Problems 132
" E. F& [" J" \7 K( k; w( |5.10 Bending in Nonlinear Viscoelasticity 133
- J/ G3 y# I* h! \5.11 Summary 134% @# _, v: z: f8 \
5.12 Examples 134
3 [/ {- K- Q5 G4 i: [5.13 Problems 1427 D8 Q2 G7 }% O) M6 T5 U
Bibliography 142$ w( H9 r9 O9 H8 K
7 z* J- r7 g1 ]* B9 Q! q

1 t( u7 ~- F/ K$ v( Z' R/ |8 o$ _( r1 m( [! u7 w: H# N
6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145! b  f) R3 p& H! |$ A& {' a4 s% @
6.1 Introduction and General Requirements 145
  o$ O- n% y& Y- a& k  U' ^5 s6.2 Creep 146
1 N6 z- ~8 P$ r: t8 T% V6.2.1 Creep: Simple Methods to Obtain J (t) 146
. I4 @3 L( M( @8 B/ \* `* k6.2.2 Effect of Risetime in Transient Tests 146
% i/ y4 {! a* k& `) ?6.2.3 Creep in Anisotropic Media 148/ z) T1 Q  d; N) e2 g6 v& I& g2 k
6.2.4 Creep in Nonlinear Media 148
# l7 K) v! _7 m  @$ a/ R6.3 Inference of Moduli 150! k2 d) b# b. A, q$ w$ R
6.3.1 Use of Analytical Solutions 150
0 U( a5 f) Y' T( _) z& P6.3.2 Compression of a Block 1516 E; @# b* k) j5 t8 i- U  ~- @3 s. D
6.4 Displacement and Strain Measurement 152
/ A/ C7 J7 y  I6.5 Force Measurement 156! Y7 N$ d; ]7 ^, m: L
6.6 Load Application 157+ C' z) d' W( a; h* A" J
6.7 Environmental Control 157" {$ {) S4 R* b1 m0 l* Q
6.8 Subresonant Dynamic Methods 158/ V9 H+ o( _2 y) l9 T6 ^0 k
6.8.1 Phase Determination 158
) k" o. v- M& h! y6.8.2 Nonlinear Materials 1602 N/ v) P- a# R& p9 B8 x+ q* _
6.8.3 Rebound Test 1615 o: g+ `5 a4 s) ^- i6 \' r- U
6.9 Resonance Methods 161: U2 W/ _: @" m# |% Z4 g
6.9.1 General Principles 161
3 ]* D) C# J" T6.9.2 Particular Resonance Methods 163" V, w" x+ W+ T. V) I; @- Y
6.9.3 Methods for Low-Loss or High-Loss Materials 166
; q4 m$ A3 ?4 o% A; F# Y1 ~6 k6.9.4 Resonant Ultrasound Spectroscopy 168- q; D, y5 I1 U' w1 H
6.10 Achieving a Wide Range of Time or Frequency 171
+ N  k/ j: E. Z+ ^% n6.10.1 Rationale 171
& x5 r: k! R$ q0 R6.10.2 Multiple Instruments and Long Creep 172+ l1 m$ u  _* J6 G+ ]
6.10.3 Time–Temperature Superposition 172
' r# h/ M9 f1 N3 `$ X6 j0 O! e$ k6.11 Test Instruments for Viscoelasticity 173( n. v+ N  w6 e* U( E
6.11.1 Servohydraulic Test Machines 173
4 H: }- C8 L& @7 l3 [$ `5 C6.11.2A Relaxation Instrument 1749 ]- s* h6 D  l) n6 ^: l
6.11.3 Driven Torsion Pendulum Devices 174& `% F8 v- \6 F4 C+ S
6.11.4 Commercial Viscoelastic Instrumentation 1789 t) e6 |, O8 g6 u$ [4 W$ K
6.11.5 Instruments for a Wide Range of Time and Frequency 1794 H  j" A/ y+ [' d+ q- V7 e  Q
6.11.6 Fluctuation–Dissipation Relation 182
+ W9 N" M3 y9 }9 z( }, Z6.11.7 Mapping Properties by Indentation 183
  C: d) Y+ M5 y! n* I! l2 |5 M  _6.12 Wave Methods 184, l* ^' L* u  L9 l" F0 [% z
6.13 Summary 188
+ p2 I0 x* z8 s6.14 Examples 188( ?  m- J3 d! Z% T3 w- P  k- T
6.15 Problems 200
+ S( S- f+ E) qBibliography 201
* k% y2 r" |$ n
8 K' X6 K' r( T+ A8 e. u
8 w# Z( K& o( a) H& ?
$ V) q8 Q# H7 W5 q1 f7 Viscoelastic Properties of Materials . . . . . . . . . . . . . . . . . . . . . 207
! j4 ?4 w, x4 |/ O" z/ T" ]8 O7.1 Introduction 2078 y( h4 S5 k% V( t* \2 Z
7.1.1 Rationale 207( P! |- j8 j- L
7.1.2 Overview: Some Common Materials 207
" R0 d9 s  V1 w( k# E/ l7.2 Polymers 208% b8 A4 ~+ Y. o% ?) s6 Q
7.2.1 Shear and Extension in Amorphous Polymers 2080 c" O1 S4 ^0 s" u3 A+ D) m
7.2.2 Bulk Relaxation in Amorphous Polymers 212
/ L) _7 B& g. z4 f1 C5 m. K0 ^7.2.3 Crystalline Polymers 213$ S% Q' V! N. z% x
7.2.4 Aging and other Relaxations 214
/ \& T- L/ e: m0 _5 i7.2.5 Piezoelectric Polymers 214; _' R+ K; ]6 k3 ?0 D  h
7.2.6 Asphalt 2149 b  n6 w# |1 h
7.3 Metals 215
) ~  `2 F" Q: d8 s. [7.3.1 Linear Regime of Metals 215
, m% R6 U& [6 ^: R* @2 |$ ?; L! Z7.3.2 Nonlinear Regime of Metals 2175 I: K0 N0 o( M; `& H
7.3.3 High-Damping Metals and Alloys 219  M4 I8 T3 R& `4 `0 z
7.3.4 Creep-Resistant Alloys 2242 r; A, p6 G* x3 X+ P3 i
7.3.5 Semiconductors and Amorphous Elements 225  ~1 l: i/ H' Y
7.3.6 Semiconductors and Acoustic Amplification 226
7 _0 w5 f0 V- I! @7.3.7 Nanoscale Properties 226
5 h( Y- }6 b: i. T. e3 O: V7.4 Ceramics 2279 k! O+ u2 }0 R; j, O/ G' h
7.4.1 Rocks 227, q1 P: n- ], f. b9 f: }
7.4.2 Concrete 229" x' a5 F  K; v( F& q
7.4.3 Inorganic Glassy Materials 231
" t* H+ S7 f- v+ C% E7.4.4 Ice 231
* ~/ E7 N* p  e& W. F  N/ a7.4.5 Piezoelectric Ceramics 232
1 S: `4 c0 g# g: x7 E4 ]$ S2 p7.5 Biological Composite Materials 233
7 t$ M% F4 R* a7.5.1 Constitutive Equations 234
) C& Q; K) {5 t0 h4 u- D7.5.2 Hard Tissue: Bone 2341 u' y) \% h4 p! L: |; [8 l
7.5.3 Collagen, Elastin, Proteoglycans 236  H2 {+ H7 ]0 f$ O" g0 S
7.5.4 Ligament and Tendon 237$ K( M0 s% h+ l6 n6 _1 \
7.5.5 Muscle 240
6 K. M6 w" C- H' c7.5.6 Fat 243
8 f( c# c$ U/ U: ]! h# B7.5.7 Brain 243
+ b" N3 |4 x) L7.5.8 Vocal Folds 244
: q9 S5 g! N- b& S7.5.9 Cartilage and Joints 244
, m9 [& _, B# Z* z: K7.5.10 Kidney and Liver 2464 {+ {: T1 k. y! ?: t- e* @& t5 d
7.5.11 Uterus and Cervix 246! a: l4 l2 o2 j& O) `& T
7.5.12 Arteries 247
7 g$ K7 U/ T- E7.5.13 Lung 248" j; J; A: z% d. S; A+ L; q
7.5.14 The Ear 248
1 Z% v6 g$ v) s: z* N7.5.15 The Eye 2496 s5 o+ k- Y8 v, [
7.5.16 Tissue Comparison 2510 D% e" p& k/ K& g* k/ N6 p! ~
7.5.17 Plant Seeds 252
) }2 P' \# G( B4 p  H: F6 Y7.5.18 Wood 252
0 t$ X  `, x* I  N# d7.5.19 Soft Plant Tissue: Apple, Potato 253
* @7 y% r0 n$ `4 ?7.6 Common Aspects 253. {* q; K& `' h6 T; W! J' Q  S7 I
7.6.1 Temperature Dependence 253& l. M. {, j- W( _4 N
7.6.2 High-Temperature Background 254
0 ?/ U. r8 [! D8 E5 }" V7.6.3 Negative Damping and Acoustic Emission 255% ?# z0 e% l# w" |! e. |: ~; Z. ^6 t
7.7 Summary 255
  u# d( U* h/ D1 a' t7.8 Examples 2558 d+ W1 r8 [: r* t. O  V
7.9 Problems 256
+ T0 T4 E+ q# ]1 S  ?0 |Bibliography 257
2 w. U. ^: U2 r8 F: K% c# U) ?8 I  w, L, f+ B
1 f: j! t4 Z" a8 D: G2 F( [7 [
, s% P; }2 J, J, g" `3 K
8 Causal Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2717 O: a; ]2 j1 X  g4 _" u( \9 }
8.1 Introduction 2714 n& E5 j: E9 E* \
8.1.1 Rationale 271
  t& g9 k# ?9 Q  }9 S: L7 j5 i8.1.2 Survey of Viscoelastic Mechanisms 271/ e  U" \# M7 {0 O/ T
8.1.3 Coupled Fields 273$ w$ e9 q2 n' Y) A0 E
8.2 Thermoelastic Relaxation 274
3 p) u: p/ Y7 z; Y1 @8.2.1 Thermoelasticity in One Dimension 274) D1 x$ V; f9 U) g- X
8.2.2 Thermoelasticity in Three Dimensions 275
! J( U6 V: C/ Z8.2.3 Thermoelastic Relaxation Kinetics 276
1 `0 i* ^* |2 Y" }( K8.2.4 Heterogeneity and Thermoelastic Damping 2782 {# Z& f! w. K4 H
8.2.5 Material Properties and Thermoelastic Damping 280
% V0 j8 ]; u$ i& u" Q+ c; s& q8.3 Relaxation by Stress-Induced Fluid Motion 280& F- X( O/ g! U
8.3.1 Fluid Motion in One Dimension 2809 `; u3 ^+ C+ O( |' i* \; J* k
8.3.2 Biot Theory: Fluid Motion in Three Dimensions 281+ R* @& }$ z% W  `
8.4 Relaxation by Molecular Rearrangement 286  H# F; i/ ~) F: E3 X
8.4.1 Glassy Region 286( y; J6 c( g* Y9 m9 @
8.4.2 Transition Region 287
+ O2 z2 T3 F: M) v- n! `8.4.3 Rubbery Behavior 2899 B  ~: Q' Y! o: D; T' `* ]$ ~
8.4.4 Crystalline Polymers 291& |: T) z) U9 s- ~, k
8.4.5 Biological Macromolecules 292. x* L; Q' t' S: Q" {
8.4.6 Polymers and Metals 292
! U' @% k7 F2 x: B' }  _8.5 Relaxation by Interface Motion 292
4 k) v, i7 L$ k$ [4 x8.5.1 Grain Boundary Slip in Metals 292
8 ]4 s# i, I0 Y$ x/ V0 J' [. V8.5.2 Interface Motion in Composites 294* w, F6 N. Y5 j  m: Z0 Y/ m
8.5.3 Structural Interface Motion 294- s- h  G4 ^9 k$ t9 [  s
8.6 Relaxation Processes in Crystalline Materials 294
4 P0 `9 G3 L$ R: t+ ~5 K8.6.1 Snoek Relaxation: Interstitial Atoms 294! n5 F8 Q5 d0 T# _8 \: D
8.6.2 Zener Relaxation in Alloys: Pairs of Atoms 298
1 U6 }2 \# M* t8.6.3 Gorsky Relaxation 299' [1 ?- o' t' l
8.6.4 Granato–L ¨ ucke Relaxation: Dislocations 300& \4 J1 S4 L7 u! F' v9 b$ Q
8.6.5 Bordoni Relaxation: Dislocation Kinks 303
9 F2 e) I2 A+ P8.6.6 Relaxation Due to Phase Transformations 305
# l/ `. S8 X# c2 b8.6.7 High-Temperature Background 314
  l% ~1 I) l+ ?- ~* }8.6.8 Nonremovable Relaxations 315
$ s/ V2 I* h% e( N3 Y8.6.9 Damping Due to Wave Scattering 316
! k$ b6 A( i. E, ~8.7 Magnetic and Piezoelectric Materials 316
1 T$ }) p. o+ k; i' o. x8.7.1 Relaxation in Magnetic Media 3165 i1 W/ P4 y: W, i
8.7.2 Relaxation in Piezoelectric Materials 318( W2 x% ?# C0 H2 P
8.8 Nonexponential Relaxation 322
5 l9 K+ T) @1 b: S4 o8.9 Concepts for Material Design 323
# r9 ~; U  C5 O3 v1 ]  O* p8.9.1 Multiple Causes: Deformation Mechanism Maps 323
$ N" \4 [' L- b/ I3 |8 v8.9.2 Damping Mechanisms in High-Loss Alloys 326
% i( w3 G* |0 ]  Z8.9.3 Creep Mechanisms in Creep-Resistant Alloys 326
! E$ r! }0 B5 T8.10 Relaxation at Very Long Times 327
, N: n+ c# H2 P6 B' G" z: w/ }8.11 Summary 327
  ]4 N9 i& }: b4 N( C1 D8.12 Examples 328
- y0 t, m% L0 l6 S. A' K8.13 Problems and Questions 332. D" d( ]6 r3 {& {
Bibliography 332; X" {: A$ x# {7 q. V, O  g8 d

5 x$ S9 j# R$ }7 H" H! {. n- e+ E
; R2 F6 w% Y3 X7 c
% F" }3 \. d9 ?3 G9 Viscoelastic Composite Materials . . . . . . . . . . . . . . . . . . . . . . . 341
- f0 o& V- @6 @1 [2 L( |& W/ C" U9 g9.1 Introduction 341
$ K7 E  o# y; B" o7 g9.2 Composite Structures and Properties 341
% }" S8 p( W# F) X6 A9.2.1 Ideal Structures 341
  e5 n& l& h: Q) I# l0 g9.2.2 Anisotropy due to Structure 342
4 A6 M  d0 C, g% w0 I9.3 Prediction of Elastic and Viscoelastic Properties 344
) B* |# `; O3 g  J& R3 U9.3.1 Basic Structures: Correspondence Solutions 344  x8 ^- ~: ]* \# Q* w
9.3.2 Voigt Composite 345
$ J6 ]( ?: F" ]) F9.3.3 Reuss Composite 345) i- N6 D9 X1 m$ n! C! [& }% B
9.3.4 Hashin–Shtrikman Composite 346
/ `+ R$ a8 p$ i- d8 U5 d$ g9.3.5 Spherical Particulate Inclusions 347
% x+ h/ I( I+ X' o4 V7 v+ w! G; y9.3.6 Fiber Inclusions 349
$ t9 W6 r# j0 V1 u9.3.7 Platelet Inclusions 349
  [. d3 j6 i% ?9 }9.3.8 Stiffness-Loss Maps 3507 E3 o/ \7 A& O: x1 y/ U
9.4 Bounds on the Viscoelastic Properties 353
1 n8 C" j# F  n9.5 Extremal Composites 354
4 K6 @0 t" g) J2 [9.6 Biological Composite Materials 356
: y- h4 i% |0 U# P+ s9.7 Poisson’s Ratio of Viscoelastic Composites 357; I0 y! c; U9 M$ W0 u! e) H/ F4 a5 p2 m
9.8 Particulate and Fibrous Composite Materials 358
' D2 {' J- i# m# s0 ]6 D9.8.1 Structure 358
7 a3 J$ C0 e7 ?, o: ~4 y5 w% m9.8.2 Particulate Polymer Matrix Composites 3593 B, y; |; }5 b
9.8.3 Fibrous Polymer Matrix Composites 361
/ a3 r; `9 h7 r9.8.4 Metal–Matrix Composites 362; {# c. Y/ c# {& Y  C
9.9 Cellular Solids 363
  L2 D! P& D$ e: E: t9.10 Piezoelectric Composites 3668 i6 I+ b& P. P: w- e+ D$ n6 }1 {
9.11 Dispersion of Waves in Composites 366( t3 }; w& Y; g3 z% M; [) G, y
9.12 Summary 3675 u( y0 N* ^( s; G
9.13 Examples 367( y6 @4 h/ U+ D4 e
9.14 Problems 370# K, G  M2 r" P* z
Bibliography 370
5 O  P4 ]- }! u  Y' S3 P! e& w$ P/ K  q& v1 e. L- v
% ~# A$ G$ Z. Q. q% m" J
7 O& m9 n3 J1 O+ Q8 {
10 Applications and Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 377- S( ]3 f* N" i
10.1 Introduction 377
4 p7 m! b: }' Z/ u) u! N10.2 A Viscoelastic Earplug: Use of Recovery 377
8 H. A, `% `9 _% s) m10.3 Creep and Relaxation of Materials and Structures 378" y, l: C( B8 O/ V/ u# n
10.3.1 Concrete 378
; F2 }- X2 B0 q* q10.3.2 Wood 378* T" u( _4 U1 U" J$ p
10.3.3 Power Lines 379/ ^( {& l6 o( C
10.3.4 Glass Sag: Flowing Window Panes 380
4 N* _+ ]6 S$ F$ p; I# k- ?10.3.5 Indentation: Road Rutting 380: U8 S( M! _4 K; q. l/ h; V
10.3.6 Leather 381
; H) T0 ?. ~2 g8 i2 M" R% o0 N10.3.7 Creep-Resistant Alloys and Turbine Blades 381
) W6 G4 d2 a' n% t- o10.3.8 Loosening of Bolts and Screws 3826 s  z: d3 g; {2 V5 _9 y
10.3.9 Computer Disk Drive: Case Study of Relaxation 384. J3 ^: A  G5 V! O: [  L1 K2 P  t: C
10.3.10 Earth, Rock, and Ice 3859 ~+ [$ G& E4 M6 ^) x. P$ o) f. B, x
10.3.11 Solder 386" ]% M: w7 k; H0 y5 R/ `, m
10.3.12 Filamentsi nL ight Bulbs and Other Devices 387
1 r7 U; X9 F) V$ M  u- V. M10.3.13Tires: Flat-Spotting and Swelling 3884 K5 ~& s  {6 Q" u: k7 H* w+ z
10.3.14Cushionsfor Seats and Wheelchairs 388
/ F2 ~% I" F% a6 ?3 T, N10.3.15 Artificial Joints 389  h$ n! j7 I& X
10.3.16 Dental Fillings 389. `& o2 ]! l1 I( ^
10.3.17 Food Products 389
& S, A5 ^8 U+ F, i10.3.18 Seals and Gaskets 390
$ K4 G& B9 h  Z5 `/ A/ b2 B10.3.19 Relaxationi nM usical Instrument Strings 390
4 h% Q$ \3 i9 B% m3 {10.3.20 Winding of Tape 391$ U! m' Y7 g# W
10.4 Creep and Recovery in Human Tissue 391
- [2 n) D% H5 w8 z; Y10.4.1 Spinal Discs: Height Change 391: ~6 y9 ^+ Z- U; ]  h2 V
10.4.2 The Nose 392
/ I& Z5 t* w; A10.4.3 Skin 392
; K! X3 A: Q9 I7 L0 s) q! F10.4.4 The Head 393
% s, F  S4 k; O% m3 p) {10.5 Creep Damage and Creep Rupture 394
% @3 J" [* W! J8 J& q& B- v9 U, q* _10.5.1 Vajont Slide 394/ a1 v. F9 G8 V* Y9 _1 Z  j
10.5.2 Collapse of a Tunnel Segment 394
. }$ T9 d; q. O% O3 U- K3 _9 [10.6 Vibration Control and Waves 394
  _- `. Q" \" q# P/ s10.6.1 Analysis of Vibration Transmission 3948 \/ H* p- H' _) }. }: F" X
10.6.2 Resonant (Tuned) Damping 397, e+ W, d- B! u% w* ~7 M8 p3 v' L
10.6.3 Rotating Equipment Vibration 397# h- D! g5 H6 f. R
10.6.4 Large Structure Vibration: Bridges and Buildings 398$ ~/ G5 d  e, [) G: x7 v
10.6.5 Damping Layers for Plate and Beam Vibration 399
" P7 y+ p9 v! U6 x* ^8 A9 L' U9 u10.6.6 Structural Damping Materials 400+ V, @1 H4 u- A& e8 v! X/ _/ d
10.6.7 Piezoelectric Transducers 402
8 c! [7 M: f3 ]- c! C" @10.6.8 Aircraft Noise and Vibration 402' P. D1 Z3 C; l! d& L4 I$ O
10.6.9 Solid Fuel Rocket Vibration 404* d# P0 n5 ^- H* ~5 z' z
10.6.10 Sports Equipment Vibration 4040 I  W7 m% P& A6 H3 ~. a' Y
10.6.11 Seat Cushions and Automobiles: Protection of People 404
/ U3 \& T8 b8 M# Y. E10.6.12 Vibrationi n ScientificI nstruments 406( J+ E$ g$ q- m6 x& ~
10.6.13 Waves 4060 a) ^8 F! [7 o
10.7 “Smart” Materials and Structures 407
+ @8 p7 l9 P, _0 i& z5 v10.7.1 “Smart” Materials 407
& U+ q$ x( h# G: p3 }2 i3 N10.7.2 Shape Memory Materials 408
4 e6 d- [; l$ _10.7.3 Self-Healing Materials 409# M- [/ E4 l. N. B
10.7.4 Piezoelectric Solid Damping 4090 D9 C2 Z  @4 s
10.7.5 Active Vibration Control: “Smart” Structures 409
; i' _& J2 a. @4 N# O* D/ y10.8 Rolling Friction 409
# v& K9 J' p0 ~' q10.8.1 Rolling Analysis 4102 R+ M. P$ P) e) T
10.8.2 Rolling of Tires 411
8 m3 w5 s! t& ?3 m10.9 Uses of Low-Loss Materials 412
* y/ }0 P9 n4 E( \7 L10.9.1 Timepieces 412
9 W3 W9 T1 M4 p$ m10.9.2 Frequency Stabilization and Control 413
; Q; B" L6 Z! r4 g3 J* ]7 G: }10.9.3 Gravitational Measurements 413; h$ \5 W6 m7 e3 q  f( t7 _* k
10.9.4 Nanoscale Resonators 414
/ c5 I: J4 e+ {; j% Z10.10 Impulses, Rebound, and Impact Absorption 414; s, n, b) P4 |3 N5 o1 J. p. t
10.10.1 Rationale 414
4 M! v) T, Z, U) ~/ u# s. f. l10.10.2 Analysis 415
6 m7 B! V/ a4 N8 z8 ?5 H8 X10.10.3 Bumpers and Pads 418
: c2 K2 r* }; g1 U: ^; L10.10.4 Shoe Insoles, Athletic Tracks, and Glove Liners 419& [; x# }7 D8 F3 P" n
10.10.5 Toughness of Materials 419! {' m6 M* {0 j8 H
10.10.6 Tissue Viscoelasticity in Medical Diagnosis 420. \4 W/ x. Q& k" i" c* F0 }' m' O
10.11Rebound of a Ball 421
- c# }( y+ y/ E- Q% j& }7 ]10.11.1 Analysis 421* J2 j$ M, N5 L5 |8 g
10.11.2 Applications in Sports 422
0 @7 j8 g7 N* z- w2 ^5 S" _2 R8 v10.12 Applications of Soft Materials 424
7 G$ @, M/ F5 z# C! \10.12.1 Viscoelastic Gels in Surgery 4240 v4 A- k1 F' V% k/ G1 G; A
10.12.2 Hand Strength Exerciser 424
5 C  N+ X# z, t6 S10.12.3 Viscoelastic Toys 424
2 P4 T# P; d) u/ ~0 R% X8 G7 A% v" R10.12.4 No-Slip Flooring, Mats, and Shoe Soles 425
, P7 c6 A# j0 m' _0 m10.13 Applications Involving Thermoviscoelasticity 4255 p1 x" I* ]; X" f1 B$ i1 U
10.14 Satellite Dynamics and Stability 426
/ e! t3 a% p* i: |3 @9 b, S10.15 Summary 428+ g* c( O. C0 a# R0 X
10.16 Examples 429" B: F9 w9 @5 R7 f0 y& N6 ^
10.17 Problems 431' ^5 j. n) c/ h1 i' _- C/ h; @/ o
Bibliography 4315 c* R) K- l/ j4 V
  t4 x) K6 n. I
* Q& u  v8 t- P) A: z2 t
. [9 G* t$ p/ [( z2 F
A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4418 K: d( J& F7 `3 X- D0 \% \. q' W
A.1 Mathematical Preliminaries 4414 V' r: p7 N0 x+ J5 s3 q3 Y
A.1.1 Introduction 441
- ]' z& i& w' {9 g4 i1 F: hA.1.2 Functionals and Distributions 4416 \  K! f1 I2 ~- L
A.1.3 Heaviside Unit Step Function 4420 {" y7 Q1 d  o+ o: K
A.1.4 Dirac Delta 4428 V2 [, G, d1 O( r$ i4 F: e  i) X
A.1.5 Doublet 443
; ]9 K! y7 w' {) D# J! wA.1.6 Gamma Function 445
+ L" x( E, q0 u. l  i/ x1 mA.1.7 Liebnitz Rule 445( {0 B# U. S6 H- h- F) ?
A.2 Transforms 445: b& V9 v; F2 N) H1 i
A.2.1 Laplace Transform 446
  ]8 a) O+ M$ x& U7 q% D$ HA.2.2 Fourier Transform 446- T0 G( m9 h/ B" Z6 t& _
A.2.3 Hartley Transform 447
  {9 V/ Q. L: A* Y! i$ S! i; }1 FA.2.4 Hilbert Transform 447; r4 W( Z0 p$ G- D8 Y
A.3 Laplace Transform Properties 448
! d) B, }* ^; q; s7 t3 B3 n0 B. eA.4 Convolutions 4490 }0 F( u8 e& X2 b: o
A.5 Interrelations in Elasticity Theory 451
6 v% u" n' E" |# \A.6 Other Works on Viscoelasticity 4512 M2 G0 i+ L' N* I3 ?& x
Bibliography 452* H  _5 ^8 z, R" A0 F

% |" W, g9 d! l, q
1 R  u: s6 [, L  Q. \8 `2 PB: Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
4 ?2 e7 v+ Z* y. u7 cB.1 Principal Symbols 455
. ]9 p% b; N# [: y, w2 G3 bIndex 457* L. K1 C$ g7 y9 ^; R& p

$ {. w, x. F5 v+ W2 k! n% N' s8 w5 W
您需要登錄后才可以回帖 登錄 | 注冊會(huì)員

本版積分規(guī)則

Archiver|手機(jī)版|小黑屋|機(jī)械社區(qū) ( 京ICP備10217105號-1,京ICP證050210號,浙公網(wǎng)安備33038202004372號 )

GMT+8, 2025-7-17 19:33 , Processed in 0.097734 second(s), 22 queries , Gzip On.

Powered by Discuz! X3.5 Licensed

© 2001-2025 Discuz! Team.

快速回復(fù) 返回頂部 返回列表